Browsing by Author "Silva, Catarina C."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Investigation of potential respiratory adverse effects of micro/nanofibrillated cellulose and cellulose nanocrystals using human lung cell lines.Publication . Pinto, Fátima; Ventura, Célia; Cadete, João; Lourenço, Ana Filipa; Pedrosa, Jorge F.S.; Vital, Nádia; Pereira, Joana F.S.; Matos, Paulo; Gonçalves, Lídia; Bettencourt, Ana; Silva, Catarina C.; Fernandes, Susete N.; Godinho, Maria Helena; Vieira, Luís; Jordan, Peter; Ferreira, Paulo J.T.; Louro, Henriqueta; Silva, Maria JoãoMicro/nanofibrillated (CMF/CNF) and nanocrystalline (CNC) celluloses are innovative materials with enormous potential for industrial and biomedical applications. Their expanding production/application urges the investigation of their safety for human health. This study aimed at investigating the potential respiratory outcomes of two CMF/CNF and one CNC produced from bleached Eucalyptus globulus kraft pulp using human alveolar epithelial (A549) cells grown in monoculture or co-cultured with THP-1 monocyte-derived macrophages, by assessing their cellular uptake, cytotoxic, immunotoxic, genotoxic, and epigenetic effects. The nanocelluloses were characterized for their physicochemical properties: CMF displays a low percentage of nanofibrils while CNF comprises 100% fibrils with a diameter (D) circa 11 nm; CNC consists of nanorods with D of 4-5 nm and aspect ratio around 42. TEM analysis evidenced that CMF and CNF were internalised into A549 cells whereas CNC were not. Neither cytotoxicity (colorimetric and clonogenic assays) nor ROS induction was observed for any of the nanocelluloses. CMF caused chromosomal alterations (in vitro micronucleus assay) in A549 cells while negative results were obtained in co-culture and for the other micro/nanocelluloses in mono- or co-culture. Results in progress of DNA damage and gene mutation analyses will complement mutagenesis assessment. Additionally, potential inflammatory and epigenetic effects are being evaluated. These results contribute to the weight of evidence of nanocelluloses biological effects and knowledge of the underlying molecular mechanisms. Such information will drive the synthesis of the safest nanocelluloses,thus minimising potential negative impacts of their use on human and environmental health.
