Browsing by Author "Silaghi, C."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Guidelines for the Detection of Rickettsia spp.Publication . Portillo, A.; de Sousa, R.; Santibánez, S.; Duarte, A.; Edouard, S.; Fonseca, I.P.; Marques, C.; Novakova, M.; Palomar, A.M.; Santos, M.; Silaghi, C.; Tomassone, L.; Zúquete, S.; Oteo, J.A.The genus Rickettsia (Rickettsiales: Rickettsiaceae) includes Gram-negative, small, obligate intracellular, nonmotile, pleomorphic coccobacilli bacteria transmitted by arthropods. Some of them cause human and probably also animal disease (life threatening in some patients). In these guidelines, we give clinical practice advices (microscopy, serology, molecular tools, and culture) for the microbiological study of these microorganisms in clinical samples. Since in our environment rickettsioses are mainly transmitted by ticks, practical information for the identification of these arthropods and for the study of Rickettsia infections in ticks has also been added.
- Guidelines for the Direct Detection of Anaplasma spp. in Diagnosis and Epidemiological StudiesPublication . Silaghi, C.; Santos, A.S.; Gomes, J.; Christova, I.; Matei, I.A.; Walder, G.; Domingos, A.; Bell-Sakyi, L.; Sprong, H.; von Loewenich, F.D.; Oteo, J.A.; de la Fuente, J.; Dumler, J.S.The genus Anaplasma (Rickettsiales: Anaplasmataceae) comprises obligate intracellular Gram-negative bacteria that are mainly transmitted by ticks, and currently includes six species: Anaplasma bovis, Anaplasma centrale, Anaplasma marginale, Anaplasma phagocytophilum, Anaplasma platys, and Anaplasma ovis. These have long been known as etiological agents of veterinary diseases that affect domestic and wild animals worldwide. A zoonotic role has been recognized for A. phagocytophilum, but other species can also be pathogenic for humans. Anaplasma infections are usually challenging to diagnose, clinically presenting with nonspecific symptoms that vary greatly depending on the agent involved, the affected host, and other factors such as immune status and coinfections. The substantial economic impact associated with livestock infection and the growing number of human cases along with the risk of transfusion-transmitted infections, determines the need for accurate laboratory tests. Because hosts are usually seronegative in the initial phase of infection and serological cross-reactions with several Anaplasma species are observed after seroconversion, direct tests are the best approach for both case definition and epidemiological studies. Blood samples are routinely used for Anaplasma spp. screening, but in persistently infected animals with intermittent or low-level bacteremia, other tissues might be useful. These guidelines have been developed as a direct outcome of the COST action TD1303 EURNEGVEC ("European Network of Neglected Vectors and Vector-Borne Diseases"). They review the direct laboratory tests (microscopy, nucleic acid-based detection and in vitro isolation) currently used for Anaplasma detection in ticks and vertebrates and their application.
- Neglected vector-borne zoonoses in Europe: Into the wildPublication . Tomassone, L.; Berriatua, E; De Sousa, R.; Duscher, G.G.; Mihalca, A.D.; Silaghi, C.; Sprong, H.; Zintl, A.Wild vertebrates are involved in the transmission cycles of numerous pathogens. Additionally, they can affect the abundance of arthropod vectors. Urbanization, landscape and climate changes, and the adaptation of vectors and wildlife to human habitats represent complex and evolving scenarios, which affect the interface of vector, wildlife and human populations, frequently with a consequent increase in zoonotic risk. While considerable attention has focused on these interrelations with regard to certain major vector-borne pathogens such as Borrelia burgdorferi s.l. and tick-borne encephalitis virus, information regarding many other zoonotic pathogens is more dispersed. In this review, we discuss the possible role of wildlife in the maintenance and spread of some of these neglected zoonoses in Europe. We present case studies on the role of rodents in the cycles of Bartonella spp., of wild ungulates in the cycle of Babesia spp., and of various wildlife species in the life cycle of Leishmania infantum, Anaplasma phagocytophilum and Rickettsia spp. These examples highlight the usefulness of surveillance strategies focused on neglected zoonotic agents in wildlife as a source of valuable information for health professionals, nature managers and (local) decision-makers. These benefits could be further enhanced by increased collaboration between researchers and stakeholders across Europe and a more harmonised and coordinated approach for data collection.
