Browsing by Author "Scheepers, P."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Effect biomarkers in e-waste management workersPublication . Silva, Maria João; Aimonen, K.; Louro, Henriqueta; Tavares, A.; Moreira, R.; Catalan, J.; Duca, R.C.; Godderis, L.; Mahiout, S.; Martins, C.; Martinsone, I.; Matisane, L.; Namorado, S.; Van Nieuwenhuyse, A.; Pinhal, H.; Porras, S.; Remes, J.; Scheepers, P.; Verdonck, J.; Viegas, S.; Santonen, T.; HBM4EU E-waste study teamDuring e-waste handling/processing, a broad range of toxic chemicals (metals and persistent organic compounds), are released and may affect workers’ health. This work intended to identify genotoxic effects in workers from European e-waste management companies. Micronuclei were analysed in peripheral blood lymphocytes (MNPBL) from 95 workers and 50 controls and in reticulocytes (MNRET) from 82 workers and 41 controls. No statistically significant differences were detected between the total exposed and control groups, for both MNPBL and MNRET frequencies. Stratification of workers in subgroups according to the main activities performed revealed that the subgroup involved in batteries recycling (n=23) presented a frequency of MNPBL significantly higher than that of controls. Significant differences in MNPBL frequencies were also found between battery workers and the subgroups handling/processing white goods, metals and plastics, and miscellaneous E-waste; no differences in MNRET frequencies among subgroups were detected. Worth to note, the subgroup dealing with brown goods (n=12) displayed the highest MNPBL and MNRET frequencies, although statistical significances were not observed when comparing with the other subgroups or controls. These preliminary results highlight the value of adding effect biomarkers to biomonitoring campaigns, to uncover groups of workers at enhanced risk and to prioritize risk management measures’ implementation.
- Genotoxicity in peripheral blood leukocytes and reticulocytes of e-waste management workersPublication . Aimonen, K.; Silva, Maria João; Tavares, Ana; Moreira, Rodrigo; Louro, Henriqueta; Catalán, J.; Duca, R.; Godderis, L.; Mahiout, S.; Martins, C.; Martinsone, I.; Matisane, L.; Namorado, S.; Van Nieuwenhuyse, A.; Pinhal, Hermínia; Porras, S.; Remes, J.; Verdonck, J.; Viegas, S.; Scheepers, P.; Santonen, T.The European Commission has recently adopted a new Circular Economy Action Plan, which recognizes the critical role of material circulation in achieving sustainable development. The waste management sector will play a pivotal role in this, and an increase in the number of workers involved in waste recycling is expected. However, a recent multi-centric study conducted as part of the European Human Biomonitoring Initiative (HBM4EU) highlights potential occupational health risks associated with e-waste management. This study reports the exposure of e-waste workers from six European countries to metals and the early genotoxic effects from exposure to a wide array of toxic chemicals (and their mixtures) in the occupational environment. The results showed that e-waste workers are exposed to higher levels of hazardous metals such as lead (Pb), cadmium (Cd), mercury (Hg), and chromium (Cr) than controls. Significantly higher levels were detected in the post-shift urine and blood samples of different subcategories of e-waste workers. Especially the level of Pb was elevated in urine and blood samples among all worker categories, and the highest values were detected in battery recycling workers. Genotoxic effects were assessed by the micronucleus frequencies in peripheral blood lymphocytes (MNPBL) and reticulocytes (MNRET). MNPBL were analyzed in 95 workers and 50 controls, and MNRET in 82 workers and 41 controls. While there were no statistically significant differences between all workers and controls, the subgroup of battery recycling workers showed significantly higher frequency of MNPBL than controls or other exposed subgroups such as workers handling white goods, metals and plastics or miscellaneous e-waste. The highest MNPBL and MNRET frequencies were observed in workers handling brown goods, but the difference to controls, or to the other worker categories, was not statistically significant. Post-shift urinary levels of studied metals did not show positive correlation with the micronucleus frequencies, which might be partially explained by the heterogeneity of activities considered and related exposure levels found. In addition to metals, the study also measured exposure to flame retardants, phthalates, and polychlorinated biphenyls (PCBs) and, thereby, correlations between exposure to those compounds and effect biomarkers will be further explored. Overall, the study highlights the need to raise awareness of potential hazards and improve risk management measures in the e-waste management sector. The micronucleus results provide valuable new information on early biological effects from occupational exposures during e-waste management that also contribute to identifying worker groups that are at higher risk of adverse health effects.
- HBM4EU chromates study: untargeted metabolomics study of workers exposed to hexavalent chromiumPublication . Kozłowska, Lucyna; Santonen, T.; Duca, R.C.; Godderis, L.; Jagiello, K.; Janasik, B.; Van Nieuwenhuyse, A.; Poels, K.; Puzyn, T.; Scheepers, P.; Sijko, M.; Silva, Maria João; Sosnowska, A.; Viegas, S.; Verdonck, J.; Wąsowicz, W.; HBM4EU Chromates Study Team and Statistical TeamDue to the wide use of Cr(VI), a large number of workers in a variety of industries are ex-posed to the potential harmful effects of this compound. The aim of this study was to inves-tigate changes in metabolic pathways in response to Cr(VI) exposure and to search for new urinary biomarkers. The study included 220 male workers who were exposed to Cr(VI) (through welding, chromium plating, surface treatment) and 102 male controls from Bel-gium, Finland, Poland, Portugal, and the Netherlands. Urinary metabolite profiles were de-termined using liquid chromatography mass spectrometry. The changes in the abundancy of excreted metabolites observed in post-shift workers vs. controls reflect fatty acid and mon-oamine neurotransmitter metabolism, oxidative modifications of amino acid residues, the excessive formation of abnormal amino acid metabolites and changes mainly in steroid hormones. We observed that: argininosuccinic acid, ubiquinone-1, indole-3-propionicacid, 6-hydroxyphenylpropionylglycine, 20-oxo-leukotriene E4, 3,4-dihydroxybenzylamine, 3,4-dimethoxyphenylethylamine and succinylacetone are potential biomarkers for Cr(VI) exposure (area under the curve > 0.9). The results of our study could form the basis for vali-dating early biomarkers of Cr(VI) exposure and their application in screening tests, and also serve as a starting point for further targeted metabolomics studies to better understand the disorders associated with Cr(VI) exposure.
- A roadmap for a 21st century human biomonitoring toolboxPublication . Zare Jeddi, Maryam; Conrad, A.; Kolossa-Gehring, M.; Hopf, N.; Viegas, S.; Pasanen-Kase, R.; Sepai, O.; Galea, K.S.; Cubadda, F.; Louro, Henriqueta; Silva, Maria João; Nieuwenhuyse, A.V.; Santonen, T.; Scheepers, P.Current challenges in data comparability, integration, and management, hinder effective utilization of the large amount of data generated in environment and health studies. The European chapter of the International Society of Exposure Science (ISES Europe) Human Biomonitoring (HBM) Working Group is developing a global preregistration platform “FAIR Environment and Health Registry (FAIREHR)” to address these challenges. The focus is initially on the HBM domain, towards the implementation of FAIR (findable, accessible, interoperable, reusable) principles throughout the data lifecycle. Preregistration of HBM studies in a peer review-based registry like FAIREHR would stimulate communication and interaction among HBM communities leading to improved HBM study designs as well as generating comparable results worldwide. Using common standards and ontologies will make data better interoperable and functional for machine discovery. FAIREHR will also provide information on data licenses and request procedures necessary to access datasets of interest. Overall, the FAIREHR platform gathers many stakeholders (scientists, regulators, policy makers, life science companies, publishers, and funding bodies) interested in tracking and identifying planned, ongoing, and completed studies. FAIREHR is expected to benefit research, innovation and environment and public health policies by providing FAIR data that can be readily utilized for protecting human health.
- Unlocking the Potential of Environmental and Health Research with FAIREHRPublication . Zare Jeddi, Maryam; Hopf, N.; Louro, Henriqueta; Silva, Maria João; Costa, Carla; Viegas, S.; Scheepers, P.; Cubadda, F.; Ghosh, M.; Ali, I.; Santonen, T.; von Goetz, N.; Bessems, J.; Galea, K.S.Current challenges in data comparability, integration, and management, hinder effective utilization of the large amount of data generated in environment and health studies. The European chapter of the International Society of Exposure Science (ISES Europe) Human Biomonitoring (HBM) Working Group is developing a global preregistration platform “FAIR Environment and Health Registry (FAIREHR)” to address these challenges. The focus is initially on the HBM domain, towards the implementation of FAIR (findable, accessible, interoperable, reusable) principles throughout the data lifecycle. Preregistration of HBM studies in a peer review-based registry like FAIREHR would stimulate communication and interaction among HBM communities leading to improved HBM study designs as well as generating comparable results worldwide. Using common standards and ontologies will make data better interoperable and functional for machine discovery. FAIREHR will also provide information on data licenses and request procedures necessary to access datasets of interest. Overall, the FAIREHR platform gathers many stakeholders (scientists, regulators, policy makers, life science companies, publishers, and funding bodies) interested in tracking and identifying planned, ongoing, and completed studies. FAIREHR is expected to benefit research, innovation and environment and public health policies by providing FAIR data that can be readily utilized for protecting human health.
