Browsing by Author "Oliveira, Ana S."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Chemical characterization and bioactive potential of Thymus × citriodorus (Pers.) Schreb. preparations for anti-acne applications: Antimicrobial, anti-biofilm, anti-inflammatory and safety profilesPublication . Oliveira, Ana S.; Rolo, Joana; Gaspar, Carlos; Cavaleiro, Carlos; Salgueiro, Lígia; Palmeira-de-Oliveira, Rita; Ferraz, Celso; Coelho, Susana; Pastorinho, M. Ramiro; Sousa, Ana Catarina; Teixeira, João Paulo; Martinez-de-Oliveira, José; Palmeira-de-Oliveira, AnaEthnopharmacological relevance: Thymus × citriodorus (Pers.) Schreb. is an interspecific hybrid between Thymus pulegioides and Thymus vulgaris, known for its pharmacological activities as diaphoretic, deodorant, antiseptic and disinfectant, the last mostly related with its antimicrobial activity. The folk use of other extracts, as hydrolates, have also been disseminated, as regulators of oily skin with anti-acne effect. Aim of the study: We aimed to evaluate the anti-acne potential of two Thymus x citriodorus (TC) preparations, the essential oil (EO) and the hydrolate, to be used as active ingredients for skin applications. Specifically, we intend to validate their anti-acne potential by describing their activity on acne related bacteria, bacterial virulence, anti-oxidant and anti-inflammatory potential, and biocompatibility on inflammatory cells. Additionally, we aimed to report their ecotoxicity under the Globally Harmonized System of Classification and Labelling of Chemicals (GHS), thus focusing not only on the consumer, but also on environmental safety assessment. Materials and methods: Minimum inhibitory concentration (MIC) against C. acnes, S. aureus and S. epidermidis was evaluated. Minimum lethal concentration (MLC) was also determined. The effect on C. acnes biofilm formation and disruption was evaluated with crystal violet staining. Anti-inflammatory activity was investigated on LPS-stimulated mouse macrophages (RAW 264.7), by studying nitric oxide (NO) production (Griess reagent) and cellular biocompatibility through MTT assay. In-vitro NO and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging potential were also evaluated. The ecotoxicity was evaluated using Daphnia magna acute toxicity assays. Results: EO presented direct antimicrobial activity, with visual MICs ranging from 0.06% for S. epidermidis and C. acnes to 0.125% for S. aureus. MLCs were higher than the obtained MICs. Hydrolate revealed visual MIC only for C. acnes. TC essential oil was effective in preventing biofilm formation and disrupting preformed biofilms even at sub-inhibitory concentrations. Hydrolate showed a more modest anti-biofilm effect. Regarding anti-inflammatory activity, TC hydrolate has a higher cellular biocompatibility. Still, both plant preparations were able to inhibit at least 50% of NO production at non-cytotoxic concentrations. Both EO and hydrolate have poor anti-oxidant activities. Regarding the ecotoxicity, TC essential oil was classified under acute 3 category, while the hydrolate has proved to be nontoxic, in accordance to the GHS. Conclusions: These results support the anti-acne value of different TC preparations for different applications. TC hydrolate by presenting higher biocompatibility, anti-inflammatory potential and the ability to modulate C. acnes virulence, can be advantageous in a product for everyday application. On the other hand, EO by presenting a marked antimicrobial, anti-biofilm and anti-inflammatory activities, still with some cytotoxicity, may be better suited for application in acute flare-ups, for short treatment periods.
- Thymus mastichina (L.) L. and Cistus ladanifer L. for skin application: chemical characterization and in vitro bioactivity assessmentPublication . Oliveira, Ana S.; Rolo, Joana; Gaspar, Carlos; Ramos, Leonor; Cavaleiro, Carlos; Salgueiro, Lígia; Palmeira-de-Oliveira, Rita; Teixeira, João Paulo; Martinez-de-Oliveira, José; Palmeira-de-Oliveira, AnaEthnopharmacological relevance: Thymus mastichina (L.) L. (TM) and Cistus ladanifer L. (CL) are two Portuguese autochthonous species with traditional skin application in folk medicine. TM is majorly known for its antiseptic and wound healing properties, as an external anti-inflammatory agent and for its application in folk cosmetics and hygiene products. Its use in acne vulgaris has also been reported. CL is traditionally used in remedies for wounds, ulcers and other skin ailments such as psoriasis and eczema. Its application has been found useful due to its anti-inflammatory, astringent, wound healing and antiseptic properties. Aim of the study: With this work, we aimed to investigate relevant bioactivities related with the traditional application of TM and CL essential oils (EOs) and hydrolates (by-products of EO production) in skin ailments. Specifically their in vitro antioxidant, anti-inflammatory, cytotoxic, wound healing and antimicrobial properties were evaluated. The chemical composition of both EOs and respective hydrolates was also characterized. Materials and methods: Chemical characterization of EOs and hydrolates was performed by GC-FID and GC-MS. Cellular biocompatibility was evaluated using the MTT assay in macrophages (RAW 264.7) and fibroblasts (L929) cell lines. Anti-inflammatory activity was investigated by studying nitric oxide (NO) production by macrophages with Griess reagent. Wound healing potential was evaluated with the scratch-wound assay. The antioxidant potential was studied by the DPPH scavenging method. Antimicrobial activity was evaluated by broth microdilution assay against relevant microbial strains and skin pathogens, namely Staphylococcus aureus, Staphylococcus epidermidis, Cutibacterium acnes, Pseudomonas aeruginosa, Escherichia coli, Candida albicans and Aspergillus brasiliensis. Results: The major compounds present in TM and CL EOs were 1,8-cineole and α-pinene, respectively. 1,8-cineole and E-pinocarveol were the major compounds in the correspondent hydrolates. CL EO presented the highest anti-inflammatory potential [EC50 = 0.002% (v/v)], still with significant cytotoxicity [IC50 = 0.012% (v/v)]. TM preparations presented anti-inflammatory potential, also presenting higher biocompatibility. The same profile was present on fibroblasts regarding biocompatibility of the tested preparations. CL EO and hydrolate increased fibroblasts' migration by 155.7% and 148.4%, respectively. TM hydrolate presented a milder activity than CL hydrolate, but wound healing potential was still present, increasing cell migration by 125.1%. All preparations presented poor antioxidant capacity. CL EO presented higher antimicrobial activity, with MICs ranging from 0.06% (v/v) to 2% (v/v), against different microorganisms. Conclusions: Anti-inflammatory and skin repairing potential were present for CL preparations. TM hydrolate presented an interesting biocompatible profile on both cell lines, also presenting anti-inflammatory potential. Furthermore, EOs from both species presented antimicrobial activity against a panel of different microorganisms. These in vitro bioactivities support some of their traditional skin applications, specifically regarding their antiseptic, wound healing and anti-inflammatory uses.
