Browsing by Author "Moreira, Ana S.P."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Dried blood spots in clinical lipidomics: optimization and recent findingsPublication . Ferreira, Helena Beatriz; Guerra, Inês M.S.; Melo, Tânia; Rocha, Hugo; Moreira, Ana S.P.; Paiva, Artur; Domingues, M. RosárioDried blood spots (DBS) are being considered as an alternative sampling method of blood collection that can be used in combination with lipidomic and other omic analysis. DBS are successfully used in the clinical context to collect samples for newborn screening for the measurement of specific fatty acid derivatives, such as acylcarnitines, and lipids from whole blood for diagnostic purposes. However, DBS are scarcely used for lipidomic analysis and investigations. Lipidomic studies using DBS are starting to emerge as a powerful method for sampling and storage in clinical lipidomic analysis, but the major research work is being done in the pre- and analytical steps and procedures, and few in clinical applications. This review presents a description of the impact factors and variables that can affect DBS lipidomic analysis, such as the type of DBS card, haematocrit, homogeneity of the blood drop, matrix/chromatographic effects, and the chemical and physical properties of the analyte. Additionally, a brief overview of lipidomic studies using DBS to unveil their application in clinical scenarios is also presented, considering the studies of method development and validation and, to a less extent, for clinical diagnosis using clinical lipidomics. DBS combined with lipidomic approaches proved to be as effective as whole blood samples, achieving high levels of sensitivity and specificity during MS and MS/MS analysis, which could be a useful tool for biomarker identification. Lipidomic profiling using MS/MS platforms enables significant insights into physiological changes, which could be useful in precision medicine.
- Mitochondrial Fatty Acid β-Oxidation Disorders: From Disease to Lipidomic Studies—A Critical ReviewPublication . Guerra, Inês M.S.; Ferreira, Helena B.; Melo, Tânia; Rocha, Hugo; Moreira, Sónia; Diogo, Luísa; Domingues, Maria Rosário; Moreira, Ana S.P.Fatty acid oxidation disorders (FAODs) are inborn errors of metabolism (IEMs) caused by defects in the fatty acid (FA) mitochondrial β-oxidation. The most common FAODs are characterized by the accumulation of medium-chain FAs and long-chain (3-hydroxy) FAs (and their carnitine derivatives), respectively. These deregulations are associated with lipotoxicity which affects several organs and potentially leads to life-threatening complications and comorbidities. Changes in the lipidome have been associated with several diseases, including some IEMs. In FAODs, the alteration of acylcarnitines (CARs) and FA profiles have been reported in patients and animal models, but changes in polar and neutral lipid profile are still scarcely studied. In this review, we present the main findings on FA and CAR profile changes associated with FAOD pathogenesis, their correlation with oxidative damage, and the consequent disturbance of mitochondrial homeostasis. Moreover, alterations in polar and neutral lipid classes and lipid species identified so far and their possible role in FAODs are discussed. We highlight the need of mass-spectrometry-based lipidomic studies to understand (epi)lipidome remodelling in FAODs, thus allowing to elucidate the pathophysiology and the identification of possible biomarkers for disease prognosis and an evaluation of therapeutic efficacy.
