Browsing by Author "Miguel, T.S."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Association of the alpha4 integrin subunit gene (ITGA4) with autismPublication . Correia, C.; Coutinho, A.M.; Almeida, J.; Lontro, R.; Lobo, C.; Miguel, T.S.; Martins, M.; Gallagher, L.; Conroy, J.; Gill, M.; Oliveira, G.; Vicente, A.M.In the present work, we provide further evidence for the involvement of the integrin alpha-4 precursor gene (ITGA4) in the etiology of autism, by replicating previous findings of a genetic association with autism in various independent populations. The ITGA4 gene maps to the autism linkage region on 2q31-33 and is therefore a plausible positional candidate. We tested eight single nucleotide polymorphisms (SNPs) in the ITGA4 gene region for association with autism in a sample of 164 nuclear families. Evidence for association was found for the rs155100 marker (P = 0.019) and for a number of specific marker haplotypes containing this SNP (0.00053 < P < 0.022). alpha4 integrins are known to play a key role in neuroinflammatory processes, which are hypothesized to contribute to autism. In this study, an association was found between the ITGA4 rs1449263 marker and levels of a serum autoantibody directed to brain tissue, which was previously shown to be significantly more frequent in autistic patients than in age-matched controls in our population. This result suggests that the ITGA4 gene could be involved in a neuroimmune process thought to occur in autistic patients and, together with previous findings, offers a new perspective on the role of integrins in the etiology of autism to which little attention has been paid so far.
- Epidemiology of autism spectrum disorder in Portugal: prevalence, clinical characterization, and medical conditionsPublication . Oliveira, G.; Ataíde, A.; Marques, C.; Miguel, T.S.; Coutinho, A.M.; Mota-Vieira, L.; Gonçalves, E.; Lopes, N.M.; Rodrigues, V.; Carmona da Mota, H.; Vicente, A.M.The objective of this study was to estimate the prevalence of autistic spectrum disorder (ASD) and identify its clinical characterization, and medical conditions in a paediatric population in Portugal. A school survey was conducted in elementary schools, targeting 332,808 school-aged children in the mainland and 10,910 in the Azores islands. Referred children were directly assessed using the Diagnostic and Statistical Manual of Mental Disorders (4th edn), the Autism Diagnostic Interview-Revised, and the Childhood Autism Rating Scale. Clinical history and a laboratory investigation was performed. In parallel, a systematic multi-source search of children known to have autism was carried out in a restricted region. The global prevalence of ASD per 10,000 was 9.2 in mainland, and 15.6 in the Azores, with intriguing regional differences. A diversity of associated medical conditions was documented in 20%, with an unexpectedly high rate of mitochondrial respiratory chain disorders.
- Evidence for epistasis between SLC6A4 and ITGB3 in autism etiology and in the determination of platelet serotonin levelsPublication . Coutinho, A.M.; Sousa, I.; Martins, M.; Correia, C.; Morgadinho, T.; Bento, C.; Marques, C.; Ataíde, A.; Miguel, T.S.; Moore, J.H.; Oliveira, G.; Vicente, A.M.Autism is a neurodevelopmental disorder of unclear etiology. The consistent finding of platelet hyperserotonemia in a proportion of patients and its heritability within affected families suggest that genes involved in the serotonin system play a role in this disorder. The role in autism etiology of seven candidate genes in the serotonin metabolic and neurotransmission pathways and mapping to autism linkage regions (SLC6A4, HTR1A, HTR1D, HTR2A, HTR5A, TPH1 and ITGB3) was analyzed in a sample of 186 nuclear families. The impact of interactions among these genes in autism was assessed using the multifactor-dimensionality reduction (MDR) method in 186 patients and 181 controls. We further evaluated whether the effect of specific gene variants or gene interactions associated with autism etiology might be mediated by their influence on serotonin levels, using the quantitative transmission disequilibrium test (QTDT) and the restricted partition method (RPM), in a sample of 109 autistic children. We report a significant main effect of the HTR5A gene in autism (P = 0.0088), and a significant three-locus model comprising a synergistic interaction between the ITGB3 and SLC6A4 genes with an additive effect of HTR5A (P < 0.0010). In addition to the previously reported contribution of SLC6A4, we found significant associations of ITGB3 haplotypes with serotonin level distribution (P = 0.0163). The most significant models contributing to serotonin distribution were found for interactions between TPH1 rs4537731 and SLC6A4 haplotypes (P = 0.002) and between HTR1D rs6300 and SLC6A4 haplotypes (P = 0.013). In addition to the significant independent effects, evidence for interaction between SLC6A4 and ITGB3 markers was also found. The overall results implicate SLC6A4 and ITGB3 gene interactions in autism etiology and in serotonin level determination, providing evidence for a common underlying genetic mechanism and a molecular explanation for the association of platelet hyperserotonemia with autism.
- Increased BDNF levels and NTRK2 gene association suggest a disruption of BDNF/TrkB signaling in autismPublication . Correia, C.T.; Coutinho, A.M.; Sequeira, A.F.; Sousa, I.G.; Lourenço Venda, L.; Almeida, J.P.; Abreu, R.L.; Lobo, C.; Miguel, T.S.; Conroy, J.; Cochrane, L.; Gallagher, L.; Gill, M.; Ennis, S.; Oliveira, G.G.; Vicente, A.M.The brain-derived neurotrophic factor (BDNF), a neurotrophin fundamental for brain development and function, has previously been implicated in autism. In this study, the levels of BDNF in platelet-rich plasma were compared between autistic and control children, and the role of two genetic factors that might regulate this neurotrophin and contribute to autism etiology, BDNF and NTRK2, was examined. We found that BDNF levels in autistic children (n = 146) were significantly higher (t = 6.82; P < 0.0001) than in control children (n = 50) and were positively correlated with platelet serotonin distribution (r = 0.22; P = 0.004). Heritability of BDNF was estimated at 30% and therefore candidate genes BDNF and NTRK2 were tested for association with BDNF level distribution in this sample, and with autism in 469 trio families. Genetic association analysis provided no evidence for BDNF or NTRK2 as major determinants of the abnormally increased BDNF levels in autistic children. A significant association with autism was uncovered for six single nucleotide polymorphisms (SNPs) [0.004 (Z((1df)) = 2.85) < P < 0.039 (Z((1df)) = 2.06)] and multiple haplotypes [5 × 10(-4) (χ((3df)) = 17.77) < P < 0.042 (χ((9df)) = 17.450)] in the NTRK2 gene. These results do not withstand correction for multiple comparisons, however, reflect a trend toward association that supports a role of NTRK2 as a susceptibility factor for the disorder. Genetic variation in the BDNF gene had no impact on autism risk. By substantiating the previously observed increase in BDNF levels in autistic children in a larger patient set, and suggesting a genetic association between NTRK2 and autism, this study integrates evidence from multiple levels supporting the hypothesis that alterations in BDNF/tyrosine kinase B (TrkB) signaling contribute to an increased vulnerability to autism.
- MECP2 coding sequence and 3'UTR variation in 172 unrelated autistic patientsPublication . Coutinho, A.M.; Oliveira, G.; Katz, C.; Feng, J.; Yan, J.; Yang, C.; Marques, C.; Ataíde, A.; Miguel, T.S.; Borges, L.; Almeida, J.; Correia, C.; Currais, A.; Bento, C.; Mota-Vieira, L.; Temudo, T.; Santos, M.; Maciel, P.; Sommer, S.S.; Vicente, A.M.Mutations in the coding sequence of the methyl-CpG-binding protein 2 gene (MECP2), which cause Rett syndrome (RTT), have been found in male and female autistic subjects without, however, a causal relation having unequivocally been established. In this study, the MECP2 gene was scanned in a Portuguese autistic population, hypothesizing that the phenotypic spectrum of mutations extends beyond the traditional diagnosis of RTT and X-linked mental retardation, leading to a non-lethal phenotype in male autistic patients. The coding region, exon-intron boundaries, and the whole 3'UTR were scanned in 172 patients and 143 controls, by Detection of Virtually All Mutations-SSCP (DOVAM-S). Exon 1 was sequenced in 103 patients. We report 15 novel variants, not found in controls: one missense, two intronic, and 12 in the 3'UTR (seven in conserved nucleotides). The novel missense change, c.617G > C (p.G206A), was present in one autistic male with severe mental retardation and absence of language, and segregates in his maternal family. This change is located in a highly conserved residue within a region involved in an alternative transcriptional repression pathway, and likely alters the secondary structure of the MeCP2 protein. It is therefore plausible that it leads to a functional modification of MeCP2. MECP2 mRNA levels measured in four patients with 3'UTR conserved changes were below the control range, suggesting an alteration in the stability of the transcripts. Our results suggest that MECP2 can play a role in autism etiology, although very rarely, supporting the notion that MECP2 mutations underlie several neurodevelopmental disorders.
- Pharmacogenetics of risperidone therapy in autism: association analysis of eight candidate genes with drug efficacy and adverse drug reactionsPublication . Correia, C.T.; Almeida, J.P.; Santos, P.E.; Sequeira, A.F.; Marques, C.E.; Miguel, T.S.; Abreu, R.L.; Oliveira, G.G.; Vicente, A.M.Little has been reported on the factors, genetic or other, that underlie the variability in individual response, particularly for autism. In this study we simultaneously explored the effects of multiple candidate genes on clinical improvement and occurrence of adverse drug reactions, in 45 autistic patients who received monotherapy with risperidone up to 1 year. Candidate genes involved in the pharmacokinetics (CYP2D6 and ABCB1) and pharmacodynamics (HTR2A, HTR2C, DRD2, DRD3, HTR6) of the drug, and the brain-derived neurotrophic factor (BDNF) gene, were analysed. Using the generalized estimating equation method these genes were tested for association with drug efficacy, assessed with the Autism Treatment Evaluation Checklist, and with safety and tolerability measures, such as prolactin levels, body mass index (BMI), waist circumference and neurological adverse effects, including extrapyramidal movements. Our results confirm that risperidone therapy was very effective in reducing some autism symptoms and caused few serious adverse effects. After adjusting for confounding factors, the HTR2A c.-1438G>A, DRD3 Ser9Gly, HTR2C c.995G>A and ABCB1 1236C>T polymorphisms were predictors for clinical improvement with risperidone therapy. The HTR2A c.-1438G>A, HTR2C c.68G>C (p.C33S), HTR6 c.7154-2542C>T and BDNF c.196G>A (p.V66M) polymorphisms influenced prolactin elevation. HTR2C c.68G>C and CYP2D6 polymorphisms were associated with risperidone-induced increase in BMI or waist circumference. We thus identified for the first time several genes implicated in risperidone efficacy and safety in autism patients. Although association results require replication, given the small sample size, the study makes a preliminary contribution to the personalized therapy of risperidone in autism.
