Percorrer por autor "Mahiout, Selma"
A mostrar 1 - 8 de 8
Resultados por página
Opções de ordenação
- HBM4EU - Deliverable Report D 5.5: Human biomonitoring in risk assessment: 2nd set of examples on the use of HBM in risk assessments of HBM4EU priority chemicalsPublication . Santonen, Tiina; Mahiout, Selma; Bessems, J.; Buekers, J.; Baken, K.; Schoeters, G.; Woutersen, M.; Vermeire, T.; Bil, W.; Ougier, E.; Rousselle, C.; Šömen Joksić, A.; Kirinčič, S.; Louro, Henriqueta; Silva, Maria João; Assunção, Ricardo; Vinggaard, A. M.; Viegas, S.; Huuskonen, P.; Porras, S.; Kiilunen, M.; Uhl, M.; Hartmann, C.; Hauzenberger, I.; Losert, A.; Tratnik, J. Snoj; Horvat, M.; Schaddelee-Scholten, B.; Buist, H.; Westerhout, J.; Fletcher, T.; Rauscher-Gabernig, E.; Plichta, V.; Abraham, K.; Borges, T.; Kadikis, N.The aim of this work was to exemplify the inclusion of human biomonitoring (HBM) data in risk assessment (RA) and health impact assessment (HIA) strategies. RA was performed for six compound groups on HBM4EU’s first list of priority substances: anilines, cadmium/chromium, flame retardants, PAHs, PFAS and phthalates. In addition, burden of disease (BoD) calculations were made for cadmium. The general approach used included: 1) identification of an existing RA for the substance, 2) identification of possible existing biological limit or guidance values or biological equivalents (BEs), or if lacking, existing health based limit values for external exposure, 3) identification of relevant biomonitoring data to be used in the RA, 4) in case no existing biological limit or guidance values or BEs existed, identification of approaches for reverse/forward calculation, including the use of PBPK modelling or calculation of BE values based on one-compartment modelling, 5) RA or BoD calculation based on HBM data, 6) analysing the benefits and challenges of using HBM data in RA compared to the use of external exposure data. The overall result of the work was that HBM can be included in RA even when relatively few data are available, and its inclusion generally benefits the RA. Several methods exist, and a tiered approach is suggested, based on the amount and quality of data available. The recommended 1st tier method is a one-compartment modelling based derivation of BE values or reverse calculation of external exposure based on biomarker levels. This approach is simple and rough, and uses only very basic parameters. However, in many cases this approach can be considered sufficient, especially when conservative assumptions have been used for the FUE, and the calculated RCRs remain well below 1, indicating a low risk. Also, in cases in which risk assessment using this approach supports the RA made based on external exposure estimates, it is often a sufficient approach. Nevertheless, in some cases e.g. where the RCR is close to 1, a more detailed approach may be needed to refine the RA. For the 2nd tier, PBPK modelling is recommended. For the most robust, 3rd tier approach, measured data on correlations between external exposure and internal doses from well controlled studies would be needed. Certain cases were identified where inclusion of HBM would be particularly important for performing RA: for compounds, for which several exposure routes may contribute to the body burden and the health effects, as HBM reflects the total body burden, and cumulative compounds. For cumulative compounds, HBM could also be useful for hazard assessment in addition to exposure assessment. One of the major challenges for the inclusion of HBM into RA is the often limited data available on toxicokinetics. In addition, in some cases, there is an urgent need for more specific biomarkers or more sensitive analytic methods than currently available. It should be noted that these risk assessments were performed purely to determine how HBM data can contribute to the risk assessment of chemicals, and they have no regulatory implications. Overall for the substances on the HBM4EU’s first list of priority substances, more HBM data are needed. This work is ongoing in WP8, and the RAs presented here will be updated when new data become available.
- HBM4EU E-waste study – An untargeted metabolomics approach to characterize metabolic changes during E-waste recyclingPublication . Kozlowska, Lucyna; Viegas, Susana; Scheepers, Paul T.J.; Duca, Radu C.; Godderis, Lode; Martins, Carla; Krzesimir, Ciura; Jagiello, Karolina; Silva, Maria João; Mahiout, Selma; Mārtiņsone, Inese; Matisāne, Linda; van Nieuwenhuyse, An; Puzyn, Tomasz; Sijko-Szpanska, Monika; Verdonck, Jelle; Santonen, Tiina; HBM4EU E-waste Study TeamE-waste contains hazardous chemicals that may be a direct health risk for workers involved in recycling. We conducted an untargeted metabolomics analysis of urine samples collected from male e-waste processing workers to explore metabolic changes associated with chemical exposures in e-waste recycling in Belgium, Finland, Latvia, Luxembourg, the Netherlands, Poland, and Portugal. Questionnaire data and urine samples were obtained from workers involved in the processing of e-waste (sorting, dismantling, shredding, pre-processing, metal, and non-metal processing), as well as from controls with no known occupational exposure. Pre- and post-shift urine samples were collected and analysed using ultrahigh-performance liquid chromatography-mass spectrometry (UPLC-MS). A total of 32 endogenous urinary metabolites were annotated with a Variable Importance in Projection (VIP) above 2, indicating that e-waste recycling is mainly associated with changes in steroid hormone and neurotransmitter metabolism, energy metabolism, bile acid biosynthesis, and inflammation. The highest VIP was observed for dopamine-o-quinone, which is linked to Parkinson’s disease. These and other changes in metabolism in workers employed in the processing of e-waste need further verification in targeted studies.
- HBM4EU e-waste study – Occupational exposure assessment to chromium, cadmium, mercury and lead during e-waste recyclingPublication . Leese, Elizabeth; Verdonck, Jelle; Porras, Simo P.; Airaksinen, Jaakko; Duca, Radu C.; Galea, Karen S.; Godderis, Lode; Janasik, Beata; Mahiout, Selma; Martins, Carla; Mārtiņsone, Inese; Ani, Maria Mirela; van Nieuwenhuyse, An; Scheepers, Paul T.J.; Silva, Maria João; Viegas, Susana; Santonen, Tiina; HBM4EU E-waste Study TeamProcessing of electronic waste (e-waste) causes the release of toxic substances which may lead to occupational exposure. The study aimed to gather information on potential occupational exposure during e-waste recycling, with a focus on biomonitoring of chromium, cadmium, mercury and lead. In eight European countries, 195 workers involved in the recycling of lead batteries, white goods, brown goods and metals and plastics were studied. These workers were compared to 73 controls with no direct involvement of e-waste recycling or other metal processing activities. The samples collected consisted of urine, blood and hair samples, along with personal air samples, hand wipes, settled dust samples and contextual information. Chromium, cadmium, mercury and lead was measured in urine, hair, air samples, hand wipes and settled dust; cadmium and lead in whole blood and chromium in red blood cells. Results showed that lead exposure is of concern, with workers from all five types of e-waste showing exposure, with elevated measurements in all matrices. Internal exposure markers were positively correlated with markers of external exposure, indicating workers are not adequately protected. Exposure to mercury and cadmium was also observed but to a much lesser extent with raised cadmium concentrations in urine and blood of all workers when compared to controls and raised mercury concentrations were found in brown goods workers when compared to controls. This study has highlighted exposure concerns when processing e-waste, particularly for lead across all waste categories studied, indicating a need for improved control measures in this sector.
- HBM4EU E-waste study: Assessing persistent organic pollutants in blood, silicone wristbands, and settled dust among E-waste recycling workers in EuropePublication . Cseresznye, Adam; Hardy, Emilie M.; Ait Bamai, Yu; Cleys, Paulien; Poma, Giulia; Malarvannan, Govindan; Scheepers, Paul T.J.; Viegas, Susana; Martins, Carla; Porras, Simo P.; Santonen, Tiina; Godderis, Lode; Verdonck, Jelle; Poels, Katrien; Silva, Maria João; Louro, Henriqueta; Martinsone, Inese; Akūlova, Lāsma; van Dael, Maurice; van Nieuwenhuyse, An; Mahiout, Selma; Duca, Radu Corneliu; Covaci, AdrianE-waste recycling is an increasingly important activity that contributes to reducing the burden of end-of-life electronic and electrical apparatus and allows for the EU's transition to a circular economy. This study investigated the exposure levels of selected persistent organic pollutants (POPs) in workers from e-waste recycling facilities across Europe. The concentrations of seven polychlorinated biphenyls (PCBs) and eight polybrominated diphenyl ethers (PBDEs) congeners were measured by GC-MS. Workers were categorized into five groups based on the type of e-waste handled and two control groups. Generalized linear models were used to assess the determinants of exposure levels among workers. POPs levels were also assessed in dust and silicone wristbands (SWB) and compared with serum. Four PCB congeners (CB 118, 138, 153, and 180) were frequently detected in serum regardless of worker's category. With the exception of CB 118, all tested PCBs were significantly higher in workers compared to the control group. Controls working in the same company as occupationally exposed (Within control group), also displayed higher levels of serum CB 180 than non-industrial controls with no known exposures to these chemicals (Outwith controls) (p < 0.05). BDE 209 was the most prevalent POP in settled dust (16 μg/g) and SWB (220 ng/WB). Spearman correlation revealed moderate to strong positive correlations between SWB and dust. Increased age and the number of years smoked cigarettes were key determinants for workers exposure. Estimated daily intake through dust ingestion revealed that ΣPCB was higher for both the 50th (0.03 ng/kg bw/day) and 95th (0.09 ng/kg bw/day) percentile exposure scenarios compared to values reported for the general population. This study is one of the first to address the occupational exposure to PCBs and PBDEs in Europe among e-waste workers through biomonitoring combined with analysis of settled dust and SWB. Our findings suggest that e-waste workers may face elevated PCB exposure and that appropriate exposure assessments are needed to establish effective mitigation strategies.
- HBM4EU e-waste study: Occupational exposure of electronic waste workers to phthalates and DINCH in EuropePublication . Cleys, Paulien; Hardy, Emilie; Ait Bamai, Yu; Poma, Giulia; Cseresznye, Adam; Malarvannan, Govindan; Scheepers, Paul T.J.; Viegas, Susana; Porras, Simo P.; Santonen, Tiina; Godderis, Lode; Verdonck, Jelle; Poels, Katrien; Martins, Carla; Silva, Maria João; Louro, Henriqueta; Martinsone, Inese; Akūlova, Lāsma; van Nieuwenhuyse, An; Graumans, Martien; Mahiout, Selma; Duca, Radu Corneliu; Covaci, AdrianWorkers involved in the processing of electronic waste (e-waste) are potentially exposed to toxic chemicals, including phthalates and alternative plasticizers (APs). Dismantling and shredding of e-waste may lead to the production of dust that contains these plasticizers. The aim of this study, which was part of the European Human Biomonitoring Initiative (HBM4EU), was to assess the exposure to phthalates (e.g. di-(2-ethylhexyl) phthalate (DEHP), diethyl phthalate (DEP), di-butyl phthalate (DBP), butyl-benzyl phthalate (BBzP), di-isononyl phthalate (DiNP), di-isodecyl phthalate (DiDP) and cyclohexane-1,2-dicarboxylic di-isononyl ester (DINCH) in e-waste workers from ten European companies. This was achieved by (i) analysing urine samples from 106 e-waste workers collected at the beginning and at the end of the work week, (ii) comparing these with urine samples from 63 non-occupationally exposed controls, and (iii) analysing settled floor dust collected in e-waste premises. Significantly higher urinary concentrations of seven out of thirteen phthalates and DINCH metabolites were found in the e-waste workers compared to the control population. However, no significant differences were found between pre- and post-shift concentrations in the e-waste workers. Concentrations of DBP, DEHP and DiDP in dust were weakly to moderately positively correlated with their corresponding urinary metabolite concentrations in the e-waste workers (Spearman's ρ = 0.4, 0.3 and 0.2, respectively). Additionally, significantly lower urinary concentrations of nine phthalates and DINCH metabolites were found in e-waste workers using respiratory protective equipment (RPE) during their work activities, reflecting the potential benefits of RPE to prevent occupational exposure to phthalates and DINCH. The estimated daily intake (EDI) values obtained in this study were lower than the corresponding tolerable daily intake (TDI) adopted by the European Food Safety Authority (EFSA) for the general population, suggesting that the risk for negative health consequences in this population of e-waste workers from exposure to phthalates and DINCH is expected to be low. This was confirmed by the urinary metabolite concentrations of all workers being lower than the HBM4EU guidance values derived for the occupational exposed and general population. This study is one of the first to address the occupational exposure to phthalates and DINCH in Europe in e-waste dismantling workers, combining a human biomonitoring approach with analysis of settled indoor dust.
- HBM4EU Occupational Biomonitoring Study on e-Waste-Study ProtocolPublication . Scheepers, Paul T.J.; Duca, Radu Corneliu; Galea, Karen S.; Godderis, Lode; Hardy, Emilie; Knudsen, Lisbeth E.; Leese, Elizabeth; Louro, Henriqueta; Mahiout, Selma; Ndaw, Sophie; Poels, Katrien; Porras, Simo P.; Silva, Maria João; Tavares, Ana Maria; Verdonck, Jelle; Viegas, Susana; Santonen, Tiina; HBM4EU e-Waste Study TeamWorkers involved in the processing of electronic waste (e-waste) are potentially exposed to toxic chemicals. If exposure occurs, this may result in uptake and potential adverse health effects. Thus, exposure surveillance is an important requirement for health risk management and prevention of occupational disease. Human biomonitoring by measurement of specific biomarkers in body fluids is considered as an effective method of exposure surveillance. The aim of this study is to investigate the internal exposure of workers processing e-waste using a human biomonitoring approach, which will stimulate improved work practices and contribute to raising awareness of potential hazards. This exploratory study in occupational exposures in e-waste processing is part of the European Human Biomonitoring Initiative (HBM4EU). Here we present a study protocol using a cross sectional survey design to study worker's exposures and compare these to the exposure of subjects preferably employed in the same company but with no known exposure to industrial recycling of e-waste. The present study protocol will be applied in six to eight European countries to ensure standardised data collection. The target population size is 300 exposed and 150 controls. Biomarkers of exposure for the following chemicals will be used: chromium, cadmium and lead in blood and urine; brominated flame retardants and polychlorobiphenyls in blood; mercury, organophosphate flame retardants and phthalates in urine, and chromium, cadmium, lead and mercury in hair. In addition, the following effect biomarkers will be studied: micronuclei, epigenetic, oxidative stress, inflammatory markers and telomere length in blood and metabolomics in urine. Occupational hygiene sampling methods (airborne and settled dust, silicon wristbands and handwipes) and contextual information will be collected to facilitate the interpretation of the biomarker results and discuss exposure mitigating interventions to further reduce exposures if needed. This study protocol can be adapted to future European-wide occupational studies.
- How to use human biomonitoring in chemical risk assessment: Methodological aspects, recommendations, and lessons learned from HBM4EUPublication . Santonen, Tiina; Mahiout, Selma; Alvito, Paula; Apel, Petra; Bessems, Jos; Bil, Wieneke; Borges, Teresa; Bose-O'Reilly, Stephan; Buekers, Jurgen; Cañas Portilla, Ana Isabel; Calvo, Argelia Castaño; de Alba González, Mercedes; Domínguez-Morueco, Noelia; López, Marta Esteban; Falnoga, Ingrid; Gerofke, Antje; Caballero, María del Carmen González; Horvat, Milena; Huuskonen, Pasi; Kadikis, Normunds; Kolossa-Gehring, Marike; Lange, Rosa; Louro, Henriqueta; Martins, Carla; Meslin, Matthieu; Niemann, Lars; Díaz, Susana Pedraza; Plichta, Veronika; Porras, Simo P.; Rousselle, Christophe; Scholten, Bernice; Silva, Maria João; Šlejkovec, Zdenka; Tratnik, Janja Snoj; Joksić, Agnes Šömen; Tarazona, Jose V.; Uhl, Maria; Van Nieuwenhuyse, An; Viegas, Susana; Vinggaard, Anne Marie; Woutersen, Marjolijn; Schoeters, GreetThe need for such information is pressing, as previous research has indicated that regulatory risk assessors generally lack knowledge and experience of the use of HBM data in RA. By recognising this gap in expertise, as well as the added value of incorporating HBM data into RA, this paper aims to support the integration of HBM into regulatory RA. Based on the work of the HBM4EU, we provide examples of different approaches to including HBM in RA and in estimations of the environmental burden of disease (EBoD), the benefits and pitfalls involved, information on the important methodological aspects to consider, and recommendations on how to overcome obstacles. The examples are derived from RAs or EBoD estimations made under the HBM4EU for the following HBM4EU priority substances: acrylamide, o-toluidine of the aniline family, aprotic solvents, arsenic, bisphenols, cadmium, diisocyanates, flame retardants, hexavalent chromium [Cr(VI)], lead, mercury, mixture of per-/polyfluorinated compounds, mixture of pesticides, mixture of phthalates, mycotoxins, polycyclic aromatic hydrocarbons (PAHs), and the UV-filter benzophenone-3. Although the RA and EBoD work presented here is not intended to have direct regulatory implications, the results can be useful for raising awareness of possibly needed policy actions, as newly generated HBM data from HBM4EU on the current exposure of the EU population has been used in many RAs and EBoD estimations.
- Using human biomonitoring for the risk assessment of polycyclic aromatic hydrocarbons in occupational exposuresPublication . Viegas, Susana; Gomes, Bruno Costa; Louro, Henriqueta; Silva, Maria João; Joksić, Agnes Šömen; Kirinčič, Stanislava; Mahiout, Selma; Santonen, TiinaBackground and Purpose: The Human Biomonitoring Initiative (HBM4EU) is a joint effort of 28 countries, the European Environment Agency and the European Commission, co-funded under Horizon 2020. HBM4EU is generating evidence of the current exposure of European citizens to chemicals and the possible health effects in order to assess the associated risks and support policy making towards human health protection. Polycyclic aromatic hydrocarbons (PAH) were considered one of the 1st priority substance groups to be addressed. In the scope of this project, the present work aimed to evaluate the added value of human biomonitoring (HBM) for the PAH risk assessment process, in the case of occupational exposure. Methods: An extensive literature search was performed to identify scientific papers published between 2008 and 2018 that included air monitoring and HBM data in several occupational settings based in Europe. Among them, those papers presenting urinary 1-hydroxypyrene (1-OHP) quantification - the most common exposure biomarker of pyrene and a surrogate for exposure to PAHs mixtures - were selected. Based on the 1-OHP values the excess lifetime cancer risk (ELCR) for workers, concerning lung cancer, was estimated following the ECHA recent approach (https://echa.europa.eu/fi/applying-for-authorisation/evaluating-applications). ELCR values calculated using air and HBM data were compared. Results: Based on the criteria described, only 7 out of 28 papers were considered for ELCR estimation. Overall, high ELCR values were estimated (several values higher than 10-4). Moreover, for some studies (3 out of 7) the ELCR estimation using HBM data yielded values higher than those estimated from air monitoring data. This might indicate that, for those specific workplaces, transdermal absorption or even hand-mouth exposure can have an important role in the total exposure to PAH and that the HBM data allows a more accurate PAH exposure assessment. Nevertheless, these findings should be interpreted with caution, since ELCR estimates from air monitoring data are based on Benzo[a]pyrene (BaP) concentrations while HBM-based ELCR determination uses urinary 1-OHP concentration that reflects exposure not only to BaP but to all PAHs, irrespectively of sources or routes of exposure. This work claims attention for two main aspects, namely: i) the exposure levels are still high in some occupational settings and ii) there is a need for developing new occupational studies, applying a set of exposure biomarkers or a more specific biomarker for BaP exposure, which would allow a better ELCR estimation for exposed workers.
