Browsing by Author "Lujan, Saturnino"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Common genetic variation in KATNAL1 non-coding regions is involved in the susceptibility to severe phenotypes of male infertilityPublication . Cerván‐Martín, Miriam; Bossini‐Castillo, Lara; Guzmán‐Jiménez, Andrea; Rivera‐Egea, Rocío; Garrido, Nicolás; Lujan, Saturnino; Romeu, Gema; Santos‐Ribeiro, Samuel; Castilla, José Antonio; Gonzalvo, María del Carmen; Clavero, Ana; Maldonado, Vicente; Vicente, Francisco Javier; Burgos, Miguel; Jiménez, Rafael; González‐Muñoz, Sara; Sánchez‐Curbelo, Josvany; López‐Rodrigo, Olga; Pereira‐Caetano, Iris; Marques, Patricia Isabel; Carvalho, Filipa; Barros, Alberto; Bassas, Lluís; Seixas, Susana; Gonçalves, João; Larriba, Sara; Lopes, Alexandra Manuel; Palomino‐Morales, Rogelio Jesús; Carmona, Francisco DavidBackground: Previous studies in animal models evidenced that genetic mutations of KATNAL1, resulting in dysfunction of its encoded protein, lead to male infertility through disruption of microtubule remodelling and premature germ cell exfoliation. Subsequent studies in humans also suggested a possible role of KATNAL1 single nucleotide polymorphisms in the development of male infertility as a consequence of severe spermatogenic failure. Objectives: The main objective of the present study is to evaluate the effect of the common genetic variation of KATNAL1 in a large and phenotypically well-characterised cohort of infertile men because of severe spermatogenic failure. Materials and methods: A total of 715 infertile men because of severe spermato genic failure, including 210 severe oligospermia and 505 non-obstructive azoospermia patients, as well as 1058 unaffected controls were genotyped for three KATNAL1 single-nucleotide polymorphism taggers (rs2077011, rs7338931 and rs2149971). Case–control association analyses by logistic regression assuming different models and in silico functional characterisation of risk variants were conducted. Results: Genetic associations were observed between the three analysed taggers and different severe spermatogenic failure groups. However, in all cases, the haplotype model (rs2077011*C | rs7338931*T | rs2149971*A) better explained the observed associations than the three risk alleles independently. This haplotype was associated with non-obstructive azoospermia (adjusted p = 4.96E-02, odds ratio = 2.97), Sertoli cell only syndrome (adjusted p = 2.83E-02, odds ratio = 5.16) and testicular sperm extraction unsuccessful outcomes (adjusted p = 8.99E-04, odds ratio = 6.13). The in silico analyses indicated that the effect on severe spermatogenic failure predisposition could be because of an alteration of the KATNAL1 splicing pattern. Conclusions: Specific allelic combinations of KATNAL1 genetic polymorphisms may confer a risk of developing severe male infertility phenotypes by favouring the overrepresentation of a short non-functional transcript isoform in the testis.
- Immune and spermatogenesis-related loci are involved in the development of extreme patterns of male infertilityPublication . Cerván-Martín, Miriam; Tüttelmann, Frank; Lopes, Alexandra M.; Bossini-Castillo, Lara; Rivera-Egea, Rocío; Garrido, Nicolás; Lujan, Saturnino; Romeu, Gema; Santos-Ribeiro, Samuel; Castilla, José A.; Carmen Gonzalvo, M.; Clavero, Ana; Maldonado, Vicente; Vicente, F. Javier; González-Muñoz, Sara; Guzmán-Jiménez, Andrea; Burgos, Miguel; Jiménez, Rafael; Pacheco, Alberto; González, Cristina; Gómez, Susana; Amorós, David; Aguilar, Jesus; Quintana, Fernando; Calhaz-Jorge, Carlos; Aguiar, Ana; Nunes, Joaquim; Sousa, Sandra; Pereira, Isabel; Pinto, Maria Graça; Correia, Sónia; Sánchez-Curbelo, Josvany; López-Rodrigo, Olga; Martín, Javier; Pereira-Caetano, Iris; Marques, Patricia I.; Carvalho, Filipa; Barros, Alberto; Gromoll, Jörg; Bassas, Lluís; Seixas, Susana; Gonçalves, João; Larriba, Sara; Kliesch, Sabine; Palomino-Morales, Rogelio J.; Carmona, F. DavidWe conducted a genome-wide association study in a large population of infertile men due to unexplained spermatogenic failure (SPGF). More than seven million genetic variants were analysed in 1,274 SPGF cases and 1,951 unaffected controls from two independent European cohorts. Two genomic regions were associated with the most severe histological pattern of SPGF, defined by Sertoli cell-only (SCO) phenotype, namely the MHC class II gene HLA-DRB1 (rs1136759, P = 1.32E-08, OR = 1.80) and an upstream locus of VRK1 (rs115054029, P = 4.24E-08, OR = 3.14), which encodes a protein kinase involved in the regulation of spermatogenesis. The SCO-associated rs1136759 allele (G) determines a serine in the position 13 of the HLA-DRβ1 molecule located in the antigen-binding pocket. Overall, our data support the notion of unexplained SPGF as a complex trait influenced by common variation in the genome, with the SCO phenotype likely representing an immune-mediated condition.
