Browsing by Author "Lobo, C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Association of the alpha4 integrin subunit gene (ITGA4) with autismPublication . Correia, C.; Coutinho, A.M.; Almeida, J.; Lontro, R.; Lobo, C.; Miguel, T.S.; Martins, M.; Gallagher, L.; Conroy, J.; Gill, M.; Oliveira, G.; Vicente, A.M.In the present work, we provide further evidence for the involvement of the integrin alpha-4 precursor gene (ITGA4) in the etiology of autism, by replicating previous findings of a genetic association with autism in various independent populations. The ITGA4 gene maps to the autism linkage region on 2q31-33 and is therefore a plausible positional candidate. We tested eight single nucleotide polymorphisms (SNPs) in the ITGA4 gene region for association with autism in a sample of 164 nuclear families. Evidence for association was found for the rs155100 marker (P = 0.019) and for a number of specific marker haplotypes containing this SNP (0.00053 < P < 0.022). alpha4 integrins are known to play a key role in neuroinflammatory processes, which are hypothesized to contribute to autism. In this study, an association was found between the ITGA4 rs1449263 marker and levels of a serum autoantibody directed to brain tissue, which was previously shown to be significantly more frequent in autistic patients than in age-matched controls in our population. This result suggests that the ITGA4 gene could be involved in a neuroimmune process thought to occur in autistic patients and, together with previous findings, offers a new perspective on the role of integrins in the etiology of autism to which little attention has been paid so far.
- Increased BDNF levels and NTRK2 gene association suggest a disruption of BDNF/TrkB signaling in autismPublication . Correia, C.T.; Coutinho, A.M.; Sequeira, A.F.; Sousa, I.G.; Lourenço Venda, L.; Almeida, J.P.; Abreu, R.L.; Lobo, C.; Miguel, T.S.; Conroy, J.; Cochrane, L.; Gallagher, L.; Gill, M.; Ennis, S.; Oliveira, G.G.; Vicente, A.M.The brain-derived neurotrophic factor (BDNF), a neurotrophin fundamental for brain development and function, has previously been implicated in autism. In this study, the levels of BDNF in platelet-rich plasma were compared between autistic and control children, and the role of two genetic factors that might regulate this neurotrophin and contribute to autism etiology, BDNF and NTRK2, was examined. We found that BDNF levels in autistic children (n = 146) were significantly higher (t = 6.82; P < 0.0001) than in control children (n = 50) and were positively correlated with platelet serotonin distribution (r = 0.22; P = 0.004). Heritability of BDNF was estimated at 30% and therefore candidate genes BDNF and NTRK2 were tested for association with BDNF level distribution in this sample, and with autism in 469 trio families. Genetic association analysis provided no evidence for BDNF or NTRK2 as major determinants of the abnormally increased BDNF levels in autistic children. A significant association with autism was uncovered for six single nucleotide polymorphisms (SNPs) [0.004 (Z((1df)) = 2.85) < P < 0.039 (Z((1df)) = 2.06)] and multiple haplotypes [5 × 10(-4) (χ((3df)) = 17.77) < P < 0.042 (χ((9df)) = 17.450)] in the NTRK2 gene. These results do not withstand correction for multiple comparisons, however, reflect a trend toward association that supports a role of NTRK2 as a susceptibility factor for the disorder. Genetic variation in the BDNF gene had no impact on autism risk. By substantiating the previously observed increase in BDNF levels in autistic children in a larger patient set, and suggesting a genetic association between NTRK2 and autism, this study integrates evidence from multiple levels supporting the hypothesis that alterations in BDNF/tyrosine kinase B (TrkB) signaling contribute to an increased vulnerability to autism.
