Percorrer por autor "Leal, Fernanda"
A mostrar 1 - 2 de 2
Resultados por página
Opções de ordenação
- Ginkgo biloba L. Leaf Extract Protects HepG2 Cells Against Paraquat-Induced Oxidative DNA DamagePublication . Silva, Amélia; Silva, Sandra; Soares, Jorge; Martins-Gomes, Carlos; Teixeira, João Paulo; Leal, Fernanda; Gaivão, IsabelGinkgo biloba L. leaf extracts and herbal infusions are used worldwide due to the health benefits that are attributed to its use, including anti-neoplastic, anti-aging, neuro-protection, antioxidant and others. The aim of this study was to evaluate the effect of an aqueous Ginkgo biloba extract on HepG2 cell viability, genotoxicity and DNA protection against paraquat-induced oxidative damage. Exposure to paraquat (PQ), over 24 h incubation at 1.0 and 1.5 µM, did not significantly reduce cell viability but induced concentration and time-dependent oxidative DNA damage. Ginkgo biloba leaf extract produced dose-dependent cytotoxicity (IC50 = 540.8 ± 40.5 µg/mL at 24 h exposure), and short incubations (1 h) produced basal and oxidative DNA damage (>750 and 1500 µg/mL, respectively). However, lower concentrations (e.g., 75 µg/mL) of Ginkgo biloba leaf extract were not cytotoxic and reduced basal DNA damage, indicating a protective effect at incubations up to 4 h. On the other hand, longer incubations (24 h) induced oxidative DNA damage. Co-incubation of HepG2 cells for 4 h, with G. biloba leaf extract (75 µg/mL) and PQ (1.0 or 1.5 µM) significantly reduced PQ-induced oxidative DNA damage. In conclusion, the consumption of Ginkgo biloba leaf extract for long periods at high doses/concentrations is potentially toxic; however, low doses protect the cells against basal oxidative damage and against environmentally derived toxicants that induce oxidative DNA damage.
- Incorrect DNA methylation of the DAZL promoter CpG island associates with defective human spermPublication . Navarro-Costa, Paulo; Nogueira, Paulo; Carvalho, Marta; Leal, Fernanda; Cordeiro, Inês; Calhaz-Jorge, Carlos; Gonçalves, João; Plancha, Carlos E.Background: Successful gametogenesis requires the establishment of an appropriate epigenetic state in developing germ cells. Nevertheless, an association between abnormal spermatogenesis and epigenetic disturbances in germline-specific genes remains to be demonstrated. Methods: In this study, the DNA methylation pattern of the promoter CpG island (CGI) of two germline regulator genes—DAZL and DAZ, was characterized by bisulphite genomic sequencing in quality-fractioned ejaculated sperm populations from normozoospermic (NZ) and oligoasthenoteratozoospermic (OAT) men. Results: OAT patients display increased methylation defects in the DAZL promoter CGI when compared with NZ controls. Such differences are recorded when analyzing sperm fractions enriched either in normal or defective germ cells (P , 0.001 in both cases). Significant differences in DNA methylation profiles are also observable when comparing the qualitatively distinct germ cell fractions inside the NZ and OAT groups (P ¼ 0.003 and P ¼ 0.007, respectively). Contrastingly, the unmethylation pattern of the DAZ promoter CGI remains correctly established in all experimental groups. Conclusions: An association between disrupted DNA methylation of a key spermatogenesis gene and abnormal human sperm is described here for the first time. These results suggest that incorrect epigenetic marks in germline genes may be correlated with male gametogenic defects.
