Browsing by Author "Khraishah, Haitham"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Associations Between Extreme Temperatures and Cardiovascular Cause-Specific Mortality: Results From 27 CountriesPublication . Alahmad, Barrak; Khraishah, Haitham; Royé, Dominic; Vicedo-Cabrera, Ana Maria; Guo, Yuming; Papatheodorou, Stefania I.; Achilleos, Souzana; Acquaotta, Fiorella; Armstrong, Ben; Bell, Michelle L.; Pan, Shih-Chun; Coelho, Micheline de Sousa Zanotti Stagliorio; Colistro, Valentina; Dang, Tran Ngoc; Dung, Do-Van; De' Donato, Francesca K.; Entezari, Alireza; Guo, Yue-Liang Leon; Hashizume, Masahiro; Honda, Yasushi; Indermitte, Ene; Íñiguez, Carmen; Jaakkola, Jouni J.K.; Kim, Ho; Lavigne, Eric; Lee, Whanhee; Li, Shanshan; Madureira, Joana; Mayvaneh, Fatemeh; Orru, Hans; Overcenco, Ala Vladimir; Ragettli, Martina S.; Ryti, Niilo R.I.; Saldiva, Paulo Hilario Nascimento; Scovronick, Noah; Seposo, Xerxes; Sera, Francesco; Silva, Susana; Stafoggia, Massimo; Tobias, Aurelio; Garshick, Eric; Bernstein, Aaron S.; Zanobetti, Antonella; Schwartz, Joel D.; Gasparrini, Antonio; Koutrakis, PetrosBackground: Cardiovascular disease is the leading cause of death worldwide. Existing studies on the association between temperatures and cardiovascular deaths have been limited in geographic zones and have generally considered associations with total cardiovascular deaths rather than cause-specific cardiovascular deaths. Methods: We used unified data collection protocols within the Multi-Country Multi-City Collaborative Network to assemble a database of daily counts of specific cardiovascular causes of death from 567 cities in 27 countries across 5 continents in overlapping periods ranging from 1979 to 2019. City-specific daily ambient temperatures were obtained from weather stations and climate reanalysis models. To investigate cardiovascular mortality associations with extreme hot and cold temperatures, we fit case-crossover models in each city and then used a mixed-effects meta-analytic framework to pool individual city estimates. Extreme temperature percentiles were compared with the minimum mortality temperature in each location. Excess deaths were calculated for a range of extreme temperature days. Results: The analyses included deaths from any cardiovascular cause (32 154 935), ischemic heart disease (11 745 880), stroke (9 351 312), heart failure (3 673 723), and arrhythmia (670 859). At extreme temperature percentiles, heat (99th percentile) and cold (1st percentile) were associated with higher risk of dying from any cardiovascular cause, ischemic heart disease, stroke, and heart failure as compared to the minimum mortality temperature, which is the temperature associated with least mortality. Across a range of extreme temperatures, hot days (above 97.5th percentile) and cold days (below 2.5th percentile) accounted for 2.2 (95% empirical CI [eCI], 2.1–2.3) and 9.1 (95% eCI, 8.9–9.2) excess deaths for every 1000 cardiovascular deaths, respectively. Heart failure was associated with the highest excess deaths proportion from extreme hot and cold days with 2.6 (95% eCI, 2.4–2.8) and 12.8 (95% eCI, 12.2–13.1) for every 1000 heart failure deaths, respectively. Conclusions: Across a large, multinational sample, exposure to extreme hot and cold temperatures was associated with a greater risk of mortality from multiple common cardiovascular conditions. The intersections between extreme temperatures and cardiovascular health need to be thoroughly characterized in the present day—and especially under a changing climate.
- Extreme Temperatures and Stroke Mortality: Evidence From a Multi-Country AnalysisPublication . Alahmad, Barrak ; Khraishah, Haitham ; Kamineni, Meghana ; Royé, Dominic ; Papatheodorou, Stefania I. ; Vicedo-Cabrera, Ana Maria ; Guo, Yuming ; Lavigne, Eric ; Armstrong, Ben ; Sera, Francesco ; Bernstein, Aaron S. ; Zanobetti, Antonella ; Garshick, Eric ; Schwartz, Joel ; Bell, Michelle L. ; Al-Mulla, Fahd; Koutrakis, Petros ; Gasparrini, Antonio ; Souzana, Achilleos ; Acquaotta, Fiorella ; Pan, Shih-Chun ; Coelho, Micheline Sousa Zanotti Stagliorio ; Colistro, Valentina ; Dang, Tran Ngoc ; Van Dung, Do ; De’ Donato, Francesca K. ; Entezari, Alireza ; Leon Guo, Yue-Liang ; Hashizume, Masahiro ; Honda, Yasushi ; Indermitte, Ene ; Íñiguez, Carmen; Jaakkola, Jouni J.K. ; Kim, Ho ; Lee, Whanhee; Li, Shanshan ; Madureira, Joana ; Mayvaneh, Fatemeh ; Orru, Hans ; Overcenco, Ala ; Ragettli, Martina S. ; Ryti, Niilo R.I. ; Saldiva, Paulo Hilario Nascimento; Scovronick, Noah ; Seposo, Xerxes ; das Neves Pereira da Silva, Susana; Stafoggia, Massimo ; Tobias, AurelioBackground: Extreme temperatures contribute significantly to global mortality. While previous studies on temperature and stroke-specific outcomes presented conflicting results, these studies were predominantly limited to single-city or single-country analyses. Their findings are difficult to synthesize due to variations in methodologies and exposure definitions. Methods: Within the Multi-Country Multi-City Network, we built a new mortality database for ischemic and hemorrhagic stroke. Applying a unified analysis protocol, we conducted a multinational case-crossover study on the relationship between extreme temperatures and stroke. In the first stage, we fitted a conditional quasi-Poisson regression for daily mortality counts with distributed lag nonlinear models for temperature exposure separately for each city. In the second stage, the cumulative risk from each city was pooled using mixed-effect meta-analyses, accounting for clustering of cities with similar features. We compared temperature-stroke associations across country-level gross domestic product per capita. We computed excess deaths in each city that are attributable to the 2.5% hottest and coldest of days based on each city's temperature distribution. Results: We collected data for a total of 3 443 969 ischemic strokes and 2 454 267 hemorrhagic stroke deaths from 522 cities in 25 countries. For every 1000 ischemic stroke deaths, we found that extreme cold and hot days contributed 9.1 (95% empirical CI, 8.6-9.4) and 2.2 (95% empirical CI, 1.9-2.4) excess deaths, respectively. For every 1000 hemorrhagic stroke deaths, extreme cold and hot days contributed 11.2 (95% empirical CI, 10.9-11.4) and 0.7 (95% empirical CI, 0.5-0.8) excess deaths, respectively. We found that countries with low gross domestic product per capita were at higher risk of heat-related hemorrhagic stroke mortality than countries with high gross domestic product per capita (P=0.02). Conclusions: Both extreme cold and hot temperatures are associated with an increased risk of dying from ischemic and hemorrhagic strokes. As climate change continues to exacerbate these extreme temperatures, interventional strategies are needed to mitigate impacts on stroke mortality, particularly in low-income countries.
