Browsing by Author "Hundessa, Samuel"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Global excess deaths associated with heatwaves in 2023 and the contribution of human-induced climate changePublication . Hundessa, Samuel; Huang, Wenzhong; Xu, Rongbin; Yang, Zhengyu; Zhao, Qi; Gasparrini, Antonio; Armstrong, Ben; Bell, Michelle L.; Huber, Veronika; Urban, Aleš; Coelho, Micheline; Sera, Francesco; Tong, Shilu; Royé, Dominic; Kyselý, Jan; de'Donato, Francesca; Mistry, Malcolm; Tobias, Aurelio; Íñiguez, Carmen; Ragettli, Martina S.; Hales, Simon; Achilleos, Souzana; Klompmaker, Jochem; Li, Shanshan; Guo, Yuming; Multi-Country Multi-City Collaborative Research NetworkAbstract: An unprecedented heatwave swept the globe in 2023, marking it one of the hottest years on record and raising concerns about its health impacts. However, a comprehensive assessment of the heatwave-related mortality and its attribution to human-induced climate change remains lacking. We aim to address this gap by analyzing high-resolution climate and mortality data from 2,013 locations across 67 countries/territories using a three-stage modeling approach. First, we estimated historical heatwave-mortality associations using a quasi-Poisson regression model with distributed lag structures, considering lag effects, seasonality, and within-week variations. Second, we pooled the estimates in meta-regression, accounting for spatial heterogeneity and potential changes in heatwave-mortality associations over time. Third, we predicted grid-specific (0.5 0.5) association in 2023 and calculated the heatwave-related excess deaths, death ratio, and death rate per million people. Attribution analysis was conducted by comparing heatwave-related mortality under factual and counterfactual climate scenarios. We estimated 178,486 excess deaths (95% empirical confidence interval [eCI], 159,892≥204,147) related to the 2023 heatwave, accounting for 0.73% of global deaths, corresponding to 23 deaths per million people. The highest mortality rates occurred in Southern (120, 95% eCI, 116≥126), Eastern (107, 95% eCI, 100≥114), and Western Europe (66, 95% eCI, 62≥70), where the excess death ratio was also higher. Notably, 54.29% (95% eCI, 45.71%≥61.36%) of the global heatwave-related deaths were attributable to human-induced climate change. These results underscore the urgent need for adaptive public health interventions and climate mitigation strategies to reduce future mortality burdens in the context of increasing global warming.
