Browsing by Author "Hardy, Emilie"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Assessment of occupational exposure to hexavalent chromium – recommendations from HBM4EU chromate studyPublication . Santonen, Tiina; Bocca, Beatrice; Bousoumah, Radia; Duca, Radu Corneliu; Galea, Karen S.; Godderis, Lode; Göen, Thomas; Hardy, Emilie; Iavicoli, Ivo; Janasik, Beata; Jones, Kate; Leese, Elizabeth; Leso, Veruscka; Louro, Henriqueta; Majery, Nicole; Ndaw, Sophie; Pinhal, Hermínia; Porras, Simo P.; Scheepers, Paul T.J.; Sepai, Ovnair; Silva, Maria João; van Nieuwenhuyse, An; Verdonck, Jelle; Viegas, Susana; Wasowicz, WojciechIntroduction: Hexavalent chromium (Cr(VI)) is an important occupational carcinogen. In addition to air monitoring biomonitoring is commonly applied to monitor exposure to Cr(VI). Within the EU biomonitoring initiative, HBM4EU, we explored the applicability of different biomonitoring methods in the assessment of occupational exposure to Cr(VI) in welding and surface treatment activities. Materials and Methods: A multi-center cross-sectional study was performed in Belgium, Finland, France, Italy, Poland, Portugal, the Netherlands, Luxembourg and United Kingdom. Harmonized procedures were used to collect biological and industrial hygiene samples. Contextual information was collected using questionnaires. Altogether 602 exposed workers and controls were included in the study. Exposure biomarkers studied included urinary, red blood cell (RBC) and plasma Cr, and exhaled breath condensate (EBC) Cr(VI)/Cr(III). In addition, number of effect biomarkers were studied. Results: All exposure markers showed highest exposure levels among chrome plating workers. U-Cr showed a good correlation with air Cr(VI) in bath platers and welders. Observed low correlations between different exposure biomarkers suggest that these approaches are not interchangeable but rather complementary. Conclusions: U-Cr showed its value as the first approach for the assessment of internal exposure to Cr(VI). We recommend pre- and post-shift samples for low exposure levels. RBC/P-Cr and EBC-Cr(VI)/Cr(III) provide additional information when more specific information on exposure is needed. The current exposure levels require analytical methods with high sensitivity.
- HBM4EU chromates study - Overall results and recommendations for the biomonitoring of occupational exposure to hexavalent chromiumPublication . Santonen, Tiina; Porras, Simo P.; Bocca, Beatrice; Bousoumah, Radia; Duca, Radu Corneliu; Galea, Karen S.; Godderis, Lode; Göen, Thomas; Hardy, Emilie; Iavicoli, Ivo; Janasik, Beata; Jones, Kate; Leese, Elizabeth; Leso, Veruscka; Louro, Henriqueta; Majery, Nicole; Ndaw, Sophie; Pinhal, Hermínia; Ruggieri, Flavia; Silva, Maria João; van Nieuwenhuyse, An; Verdonck, Jelle; Viegas, Susana; Wasowicz, Wojciech; Sepai, Ovnair; Scheepers, Paul T.J.; Aimonen, Kukka; Antoine, Guillaume; Anzion, Rob; Burgart, Manuella; Castaño, Argelia; Cattaneo, Andrea; Cavallo, Domenico Maria; De Palma, Giuseppe; Denis, Flavien; Gambelunghe, Angela; Gomes, Bruno; Hanser, Ogier; Helenius, Riikka; Ladeira, Carina; López, Marta Esteban; Lovreglio, Piero; Marsan, Philippe; Melczer, Mathieu; Nogueira, Ana; Pletea, Elisabeta; Poels, Katrien; Remes, Jouko; Ribeiro, Edna; Santos, Sílvia Reis; Schaefers, Françoise; Spankie, Sally; Spoek, Robert; Rizki, Mohamed; Rousset, Davy; van Dael, Maurice; Veijalainen, Henna; HBM4EU chromates study teamExposure to hexavalent chromium [Cr(VI)] may occur in several occupational activities, e.g., welding, Cr(VI) electroplating and other surface treatment processes. The aim of this study was to provide EU relevant data on occupational Cr(VI) exposure to support the regulatory risk assessment and decision-making. In addition, the capability and validity of different biomarkers for the assessment of Cr(VI) exposure were evaluated. The study involved nine European countries and involved 399 workers in different industry sectors with exposures to Cr(VI) such as welding, bath plating, applying or removing paint and other tasks. We also studied 203 controls to establish a background in workers with no direct exposure to Cr(VI). We applied a cross-sectional study design and used chromium in urine as the primary biomonitoring method for Cr(VI) exposure. Additionally, we studied the use of red blood cells (RBC) and exhaled breath condensate (EBC) for biomonitoring of exposure to Cr(VI). Personal measurements were used to study exposure to inhalable and respirable Cr(VI) by personal air sampling. Dermal exposure was studied by taking hand wipe samples. The highest internal exposures were observed in the use of Cr(VI) in electrolytic bath plating. In stainless steel welding the internal Cr exposure was clearly lower when compared to plating activities. We observed a high correlation between chromium urinary levels and air Cr(VI) or dermal total Cr exposure. Urinary chromium showed its value as a first approach for the assessment of total, internal exposure. Correlations between urinary chromium and Cr(VI) in EBC and Cr in RBC were low, probably due to differences in kinetics and indicating that these biomonitoring approaches may not be interchangeable but rather complementary. This study showed that occupational biomonitoring studies can be conducted successfully by multi-national collaboration and provide relevant information to support policy actions aiming to reduce occupational exposure to chemicals.
- HBM4EU chromates study - Usefulness of measurement of blood chromium levels in the assessment of occupational Cr(VI) exposurePublication . Ndaw, Sophie; Leso, Veruscka; Bousoumah, Radia; Rémy, Aurélie; Bocca, Beatrice; Duca, Radu Corneliu; Godderis, Lode; Hardy, Emilie; Janasik, Beata; van Nieuwenhuyse, An; Pinhal, Hermínia; Poels, Katrien; Porras, Simo P.; Ruggieri, Flavia; Santonen, Tiina; Santos, Sílvia Reis; Scheepers, Paul T.J.; Silva, Maria João; Verdonck, Jelle; Viegas, Susana; Wasowicz, Wojciech; Iavicoli, Ivo; HBM4EU Chromates Study TeamOccupational exposures to hexavalent Chromium (Cr(VI)) can occur in welding, hot working stainless steel processing, chrome plating, spray painting and coating activities. Recently, within the human biomonitoring for Europe initiative (HBM4EU), a study was performed to assess the suitability of different biomarkers to assess the exposure to Cr(VI) in various job tasks. Blood-based biomarkers may prove useful when more specific infor-mation on systemic and intracellular bioavailability is necessary. To this aim, concentrations of Cr in red blood cells (RBC-Cr) and in plasma (P–Cr) were analyzed in 345 Cr(VI) exposed workers and 175 controls to understand how these biomarkers may be affected by variable levels of exposure and job procedures. Compared to controls, significantly higher RBC-Cr levels were observed in bath plating and paint application workers, but not in welders, while all the 3 groups had significantly greater P–Cr concentrations. RBC-Cr and P–Cr in chrome platers showed a high correlation with Cr(VI) in inhalable dust, outside respiratory protective equipment (RPE), while such correlation could not be determined in welders. In platers, the use of RPE had a significant impact on the relationship between blood biomarkers and Cr(VI) in inhalable and respirable dust. Low correlations between P–Cr and RBC-Cr may reflect a difference in kinetics. This study showed that Cr-blood-based biomarkers can provide information on how workplace exposure translates into systemic availability of Cr(III) (extracellular, P–Cr) and Cr(VI) (intracellular, RBC-Cr). Further studies are needed to fully appreciate their use in an occupational health and safety context.
- HBM4EU e-waste study: Occupational exposure of electronic waste workers to phthalates and DINCH in EuropePublication . Cleys, Paulien; Hardy, Emilie; Ait Bamai, Yu; Poma, Giulia; Cseresznye, Adam; Malarvannan, Govindan; Scheepers, Paul T.J.; Viegas, Susana; Porras, Simo P.; Santonen, Tiina; Godderis, Lode; Verdonck, Jelle; Poels, Katrien; Martins, Carla; Silva, Maria João; Louro, Henriqueta; Martinsone, Inese; Akūlova, Lāsma; van Nieuwenhuyse, An; Graumans, Martien; Mahiout, Selma; Duca, Radu Corneliu; Covaci, AdrianWorkers involved in the processing of electronic waste (e-waste) are potentially exposed to toxic chemicals, including phthalates and alternative plasticizers (APs). Dismantling and shredding of e-waste may lead to the production of dust that contains these plasticizers. The aim of this study, which was part of the European Human Biomonitoring Initiative (HBM4EU), was to assess the exposure to phthalates (e.g. di-(2-ethylhexyl) phthalate (DEHP), diethyl phthalate (DEP), di-butyl phthalate (DBP), butyl-benzyl phthalate (BBzP), di-isononyl phthalate (DiNP), di-isodecyl phthalate (DiDP) and cyclohexane-1,2-dicarboxylic di-isononyl ester (DINCH) in e-waste workers from ten European companies. This was achieved by (i) analysing urine samples from 106 e-waste workers collected at the beginning and at the end of the work week, (ii) comparing these with urine samples from 63 non-occupationally exposed controls, and (iii) analysing settled floor dust collected in e-waste premises. Significantly higher urinary concentrations of seven out of thirteen phthalates and DINCH metabolites were found in the e-waste workers compared to the control population. However, no significant differences were found between pre- and post-shift concentrations in the e-waste workers. Concentrations of DBP, DEHP and DiDP in dust were weakly to moderately positively correlated with their corresponding urinary metabolite concentrations in the e-waste workers (Spearman's ρ = 0.4, 0.3 and 0.2, respectively). Additionally, significantly lower urinary concentrations of nine phthalates and DINCH metabolites were found in e-waste workers using respiratory protective equipment (RPE) during their work activities, reflecting the potential benefits of RPE to prevent occupational exposure to phthalates and DINCH. The estimated daily intake (EDI) values obtained in this study were lower than the corresponding tolerable daily intake (TDI) adopted by the European Food Safety Authority (EFSA) for the general population, suggesting that the risk for negative health consequences in this population of e-waste workers from exposure to phthalates and DINCH is expected to be low. This was confirmed by the urinary metabolite concentrations of all workers being lower than the HBM4EU guidance values derived for the occupational exposed and general population. This study is one of the first to address the occupational exposure to phthalates and DINCH in Europe in e-waste dismantling workers, combining a human biomonitoring approach with analysis of settled indoor dust.
- HBM4EU Occupational Biomonitoring Study on e-Waste-Study ProtocolPublication . Scheepers, Paul T.J.; Duca, Radu Corneliu; Galea, Karen S.; Godderis, Lode; Hardy, Emilie; Knudsen, Lisbeth E.; Leese, Elizabeth; Louro, Henriqueta; Mahiout, Selma; Ndaw, Sophie; Poels, Katrien; Porras, Simo P.; Silva, Maria João; Tavares, Ana Maria; Verdonck, Jelle; Viegas, Susana; Santonen, Tiina; HBM4EU e-Waste Study TeamWorkers involved in the processing of electronic waste (e-waste) are potentially exposed to toxic chemicals. If exposure occurs, this may result in uptake and potential adverse health effects. Thus, exposure surveillance is an important requirement for health risk management and prevention of occupational disease. Human biomonitoring by measurement of specific biomarkers in body fluids is considered as an effective method of exposure surveillance. The aim of this study is to investigate the internal exposure of workers processing e-waste using a human biomonitoring approach, which will stimulate improved work practices and contribute to raising awareness of potential hazards. This exploratory study in occupational exposures in e-waste processing is part of the European Human Biomonitoring Initiative (HBM4EU). Here we present a study protocol using a cross sectional survey design to study worker's exposures and compare these to the exposure of subjects preferably employed in the same company but with no known exposure to industrial recycling of e-waste. The present study protocol will be applied in six to eight European countries to ensure standardised data collection. The target population size is 300 exposed and 150 controls. Biomarkers of exposure for the following chemicals will be used: chromium, cadmium and lead in blood and urine; brominated flame retardants and polychlorobiphenyls in blood; mercury, organophosphate flame retardants and phthalates in urine, and chromium, cadmium, lead and mercury in hair. In addition, the following effect biomarkers will be studied: micronuclei, epigenetic, oxidative stress, inflammatory markers and telomere length in blood and metabolomics in urine. Occupational hygiene sampling methods (airborne and settled dust, silicon wristbands and handwipes) and contextual information will be collected to facilitate the interpretation of the biomarker results and discuss exposure mitigating interventions to further reduce exposures if needed. This study protocol can be adapted to future European-wide occupational studies.
