Browsing by Author "Gama, Miguel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- In vitro genotoxicity assessment of an oxidized dextrin-based hydrogel for biomedical applicationsPublication . Pereira, Isabel; Fraga, Sónia; Silva, Susana; Teixeira, João Paulo; Gama, MiguelHydrogels are three‐dimensional, crosslinked networks of hydrophilic polymers swollen with a large amount of water or biological fluids, without dissolving. Dextrin, a low‐molecular‐weight carbohydrate composed by glucose residues, has been used to develop an injectable hydrogel for biomedical applications. Dextrin was first oxidized to introduce aldehyde groups, which then reticulate with adipic acid dihydrazide, forming the dextrin‐based hydrogel (HG). The HG and its components were tested for cyto‐ and genotoxicity according to the International Standard ISO 10993‐3 on the biological evaluation of medical devices. To assess genotoxicity, a battery of in vitro genotoxicity tests employing both eukaryotic and prokaryotic models was performed: comet assay, cytokinesis‐block micronucleus assay and Ames test. Our data revealed that the HG (IC50 = 2.8 mg/mL) and oxidized dextrin by itself (IC50 = 1.2 mg/mL) caused a concentration‐dependent decrease in cellular viability of human lymphoblastoid TK6 cells after 24 hours of exposure to the test agents. However, these concentrations are unlikely to be reached in vivo. In addition, no significant increase in the DNA and chromosomal damage of TK6 cells exposed to non‐cytotoxic concentrations of the HG and its isolated components was detected. Furthermore, neither the HG nor its metabolites exerted a mutagenic effect in different of Salmonella typhimurium strains and in an Escherichia coli mix. Our data demonstrated the genocompatibility of the HG (up to 3.5 mg/mL) for biomedical applications. To our best acknowledge, this is the first report with a detailed genotoxicity assessment of an aldehyde‐modified polysaccharide/adipic acid dihydrazide hydrogel.
- Self-assembled Mannan Nanogel: Cytocompatibility and Cell LocalizationPublication . Carvalho, Vera; Castanheira, Pedro; Madureira, Pedro; Ferreira, Sílvia A.; Costa, Carla; Teixeira, João Paulo; Faro, Carlos; Vilanova, Manuel; Gama, MiguelAmphiphilic mannan, produced by the Michael addition of hydrophobic 1-hexadecanethiol to vinyl methacrylated mannan, self-assembles in aqueous medium through hydrophobic interactions among alkyl chains. Resultant nanogel is stable, spherical, polydisperse, with 50-140 nm mean hydrodynamic diameter depending on the polymer degree of substitution, and nearly neutral negative surface charge. No cytotoxicity of mannan nanogel is detected up to about 0.4 mg/mL in mouse embryo fibroblast cell line 3T3 and mouse bone marrow-derived macrophages (BMDM) using cell proliferation, lactate dehydrogenase and Live/Dead assays. Comet assay, under the tested conditions, reveals no DNA damage in fibroblasts but possible in BMDM. BMDM internalize the mannan nanogel, which is observed in vesicles in the cytoplasm by confocal laser scanning microscopy. Confocal colocalization image analysis denotes that the entrance and exit of nanogel and FM 4-64 might occur by the same processes - endocytosis and exocytosis - in BMDM. Physicochemical characteristics, in vitro cytocompatibility and uptake of self-assembled mannan nanogel by mouse BMDM are great signals of the potential applicability of this nanosystem for macrophages targeted delivery of vaccines or drugs, acting as potential nanomedicines, always with the key goal of preventing and/or treating diseases.
