Browsing by Author "Fernando, A.L."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- A New Insight on Cardoon: Exploring New Uses besides Cheese Making with a View to Zero WastePublication . Barbosa, Cássia H.; Andrade, Mariana A.; Vilarinho, Fernanda; Castanheira, Isabel; Fernando, A.L.; Loizzo, M.R; Sanches Silva, AnaCardoon, Cynara cardunculus L., is a perennial plant whose flowers are used as vegetal rennet in cheese making. Cardoon is native from the Mediterranean area and is commonly used in the preparation of salads and soup dishes. Nowadays, cardoon is also being exploited for the production of energy, generating large amount of wastes, mainly leaves. These wastes are rich in bioactive compounds with important health benefits. The aim of this review is to highlight the main properties of cardoon leaves according to the current research and to explore its potential uses in di erent sectors, namely the food industry. Cardoon leaves are recognized to have potential health benefits. In fact, some studies indicated that cardoon leaves could have diuretic, hepato-protective, choleretic, hypocholesterolemic, anti-carcinogenic, and antibacterial properties. Most of these properties are due to excellent polyphenol profiles, with interesting antioxidant and antimicrobial activities. These findings indicate that cardoon leaves can have new potential uses in di erent sectors, such as cosmetics and the food industry; in particular, they can be used for the preparation of extracts to incorporate into active food packaging. In the future, these new uses of cardoon leaves will allow for zero waste of this crop.
- Packaging of Fresh Poultry Meat with Innovative and Sustainable ZnO/Pectin Bionanocomposite Films—A Contribution to the Bio and Circular EconomyPublication . Przybyszewska, A.; Barbosa, C.H.; Pires, F.; Pires, J.R.A.; Rodrigues, C.; Galus, S.; Souza, V.G.L.; Alves, M M.; Santos, C.F.; Coelhoso, I.; Fernando, A.L.The development of innovative/sustainable materials capable of enlarging the shelf-life of food products has lately been a focus of research, aiming to reduce food waste. Due to their good antimicrobial properties, zinc oxide nanoparticles (ZnO NPs) can add activity to food packaging, improving its performance. Furthermore, these nanoparticles are considered GRAS by the Food and Drug Administration (FDA), which represents an advantage in their application. Through an innovative and sustainable approach using tomato and passionfruit extracts, ZnO NPs were produced and incorporated into pectin films. The resulting bionanocomposites were tested for their activity via in situ studies, using fresh poultry meat as a food matrix. Overall, the bionanocomposites presented good antimicrobial activity, with the intrinsic antimicrobial properties of pectin having shown to be enhanced by the incorporated ZnO NPs. When used as primary packaging for the meat, the deterioration rate of the poultry meat, measured through microbiological growth and total volatile basic nitrogen content, was reduced. However, the nanoparticles contributed to the increment of discoloration and meat oxidation processes. Nonetheless, it can be concluded that fresh poultry meat protected with the bionanocomposites presented an extension of its shelf-life time, and it was confirmed that this eco-friendly packaging has potential to be employed by the food industry.
