Browsing by Author "Aslan, Asli"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Effects of a Changing Earth on Microbial Dynamics and Human Health Risks in the Water/Sand ContinuumPublication . Weiskerger, Chelsea; Brandão, João; Robinson, Clare; Staley, Chris M.; Kleinheinz, Greg; Nshimyimana, Jean Pierre; Kinzelman, Julie; Nevers, Meredith B; Sadowsky, Michael Jay; Phanikumar, Mantha S; Whitman, Richard; Edge, Tom Andrew; Piggot, Alan; Boehm, Alexandria; Aslan, Asli; Badgley, Brian; Heaney, Christopher; Symonds, Erin; Solo-Gabriele, Helena; Fleisher, Jay; Harwood, Jody; Yamahara, Kevan; Vogel, Laura; Jordão, Luisa; Avolio, Lindsay; Merilainen, Paivi; Pitkanen, Tarja; Warish, Ahmed; Staley, Zachery; Klaus, JamesHumans may be exposed to microbial pathogens at recreational beaches via environmental sources such as water and sand. Although infectious disease risk from exposure to waterborne pathogens, and the fecal indicator bacteria (FIB) used to monitor water quality are active areas of research, sand is a relatively unexplored reservoir of pathogens and FIB. Sand and water at beaches experience continuous exchange of microorganisms, and these habitats provide unique advantages and challenges to pathogen introduction, growth, and persistence. Models of FIB and pathogen fate and transport in beach habitats can aid prediction of the risk of infectious disease from recreational water use, but filling knowledge gaps is necessary for accurate modeling. Climate change predictions estimate an increase in global temperatures of 2.5 – 10° F, sea level rise, and intensification of storms and precipitation in some regions. Other global change factors like population growth and urbanization may exacerbate predicted impacts. These changes can alter microbial population dynamics in beach habitats, and may consequently affect the assumptions and relationships used in numerical models. We discuss literature on microbial population and transport dynamics in sand/beach habitats, with an emphasis on how climate change and other anthropogenic influences (e.g., land use, urbanization) should be considered when using and developing models.
- Impacts of a changing earth on microbial dynamics and human health risks in the continuum between beach water and sandPublication . Weiskerger, Chelsea J.; Brandão, João; Ahmed, Warish; Aslan, Asli; Avolio, Lindsay; Badgley, Brian D.; Boehm, Alexandria B.; Edge, Thomas A.; Fleisher, Jay M.; Heaney, Christopher D.; Jordao, Luisa; Kinzelman, Julie L.; Klaus, James S.; Kleinheinz, Gregory T.; Meriläinen, Päivi; Nshimyimana, Jean Pierre; Phanikumar, Mantha S.; Piggot, Alan M.; Pitkänen, Tarja; Robinson, Clare; Sadowsky, Michael J.; Staley, Christopher; Staley, Zachery R.; Symonds, Erin M.; Vogel, Laura J.; Yamahara, Kevan M.; Whitman, Richard L.; Solo-Gabriele, Helena M.; Harwood, Valerie J.Although infectious disease risk from recreational exposure to waterborne pathogens has been an active area of research for decades, beach sand is a relatively unexplored habitat for the persistence of pathogens and fecal indicator bacteria (FIB). Beach sand, biofilms, and water all present unique advantages and challenges to pathogen introduction, growth, and persistence. These dynamics are further complicated by continuous exchange between sand and water habitats. Models of FIB and pathogen fate and transport at beaches can help predict the risk of infectious disease from beach use, but knowledge gaps with respect to decay and growth rates of pathogens in beach habitats impede robust modeling. Climatic variability adds further complexity to predictive modeling because extreme weather events, warming water, and sea level change may increase human exposure to waterborne pathogens and alter relationships between FIB and pathogens. In addition, population growth and urbanization will exacerbate contamination events and increase the potential for human exposure. The cumulative effects of anthropogenic changes will alter microbial population dynamics in beach habitats and the assumptions and relationships used in quantitative microbial risk assessment (QMRA) and process-based models. Here, we review our current understanding of microbial populations and transport dynamics across the sand-water continuum at beaches, how these dynamics can be modeled, and how global change factors (e.g., climate and land use) should be integrated into more accurate beachscape-based models.
