Browsing by Author "Alastruey-Izquierdo, Ana"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Azole-Resistance in Aspergillus terreus and Related Species: An Emerging Problem or a Rare Phenomenon?Publication . Zoran, Tamara; Sartori, Bettina; Sappl, Laura; Aigner, Maria; Sánchez-Reus, Ferran; Rezusta, Antonio; Chowdhary, Anuradha; Taj-Aldeen, Saad J.; Arendrup, Maiken C.; Oliveri, Salvatore; Kontoyiannis, Dimitrios P.; Alastruey-Izquierdo, Ana; Lagrou, Katrien; Cascio, Giuliana Lo; Meis, Jacques F.; Buzina, Walter; Farina, Claudio; Drogari-Apiranthitou, Miranda; Grancini, Anna; Tortorano, Anna M.; Willinger, Birgit; Hamprecht, Axel; Johnson, Elizabeth; Klingspor, Lena; Arsic-Arsenijevic, Valentina; Cornely, Oliver A.; Meletiadis, Joseph; Prammer, Wolfgang; Tullio, Vivian; Vehreschild, Jörg-Janne; Trovato, Laura; Lewis, Russell E.; Segal, Esther; Rath, Peter-Michael; Hamal, Petr; Rodriguez-Iglesias, Manuel; Roilides, Emmanuel; Arikan-Akdagli, Sevtap; Chakrabarti, Arunaloke; Colombo, Arnaldo L.; Fernández, Mariana S.; Martin-Gomez, M. Teresa; Badali, Hamid; Petrikkos, Georgios; Klimko, Nikolai; Heimann, Sebastian M.; Uzun, Omrum; Roudbary, Maryam; de la Fuente, Sonia; Houbraken, Jos; Risslegger, Brigitte; Lass-Flörl, Cornelia; Lackner, MichaelaObjectives: Invasive mold infections associated with Aspergillus species are a significant cause of mortality in immunocompromised patients. The most frequently occurring aetiological pathogens are members of the Aspergillus section Fumigati followed by members of the section Terrei. The frequency of Aspergillus terreus and related (cryptic) species in clinical specimens, as well as the percentage of azole-resistant strains remains to be studied. Methods: A global set (n = 498) of A. terreus and phenotypically related isolates was molecularly identified (beta-tubulin), tested for antifungal susceptibility against posaconazole, voriconazole, and itraconazole, and resistant phenotypes were correlated with point mutations in the cyp51A gene. Results: The majority of isolates was identified as A. terreus (86.8%), followed by A. citrinoterreus (8.4%), A. hortai (2.6%), A. alabamensis (1.6%), A. neoafricanus (0.2%), and A. floccosus (0.2%). One isolate failed to match a known Aspergillus sp., but was found most closely related to A. alabamensis. According to EUCAST clinical breakpoints azole resistance was detected in 5.4% of all tested isolates, 6.2% of A. terreus sensu stricto (s.s.) were posaconazole-resistant. Posaconazole resistance differed geographically and ranged from 0% in the Czech Republic, Greece, and Turkey to 13.7% in Germany. In contrast, azole resistance among cryptic species was rare 2 out of 66 isolates and was observed only in one A. citrinoterreus and one A. alabamensis isolate. The most affected amino acid position of the Cyp51A gene correlating with the posaconazole resistant phenotype was M217, which was found in the variation M217T and M217V. Conclusions:Aspergillus terreus was most prevalent, followed by A. citrinoterreus. Posaconazole was the most potent drug against A. terreus, but 5.4% of A. terreus sensu stricto showed resistance against this azole. In Austria, Germany, and the United Kingdom posaconazole-resistance in all A. terreus isolates was higher than 10%, resistance against voriconazole was rare and absent for itraconazole.
- Diagnosis of Breakthrough Fungal Infections in the Clinical Mycology Laboratory: An ECMM Consensus StatementPublication . Jenks, Jeffrey D.; Gangneux, Jean-Pierre; Schwartz, Ilan S.; Alastruey-Izquierdo, Ana; Lagrou, Katrien; Thompson III, George R.; Lass-Flörl, Cornelia; Hoenigl, Martin; European Confederation of Medical Mycology (ECMM) Council InvestigatorsBreakthrough invasive fungal infections (bIFI) cause significant morbidity and mortality. Their diagnosis can be challenging due to reduced sensitivity to conventional culture techniques, serologic tests, and PCR-based assays in patients undergoing antifungal therapy, and their diagnosis can be delayed contributing to poor patient outcomes. In this review, we provide consensus recommendations on behalf of the European Confederation for Medical Mycology (ECMM) for the diagnosis of bIFI caused by invasive yeasts, molds, and endemic mycoses, to guide diagnostic efforts in patients receiving antifungals and support the design of future clinical trials in the field of clinical mycology. The cornerstone of lab-based diagnosis of breakthrough infections for yeast and endemic mycoses remain conventional culture, to accurately identify the causative pathogen and allow for antifungal susceptibility testing. The impact of non-culture-based methods are not well-studied for the definite diagnosis of breakthrough invasive yeast infections. Non-culture-based methods have an important role for the diagnosis of breakthrough invasive mold infections, in particular invasive aspergillosis, and a combination of testing involving conventional culture, antigen-based assays, and PCR-based assays should be considered. Multiple diagnostic modalities, including histopathology, culture, antibody, and/or antigen tests and occasionally PCR-based assays may be required to diagnose breakthrough endemic mycoses. A need exists for diagnostic tests that are effective, simple, cheap, and rapid to enable the diagnosis of bIFI in patients taking antifungals.
