DGH - Teses de doutoramento
Permanent URI for this collection
Browse
Browsing DGH - Teses de doutoramento by advisor "Faustino, Paula"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Post-transcriptional regulation of HFE gene expressionPublication . Martins, Rute; Faustino, Paula; Romão, LuísaIron is a key element for numerous metabolic processes in living cells. The challenge for most organisms is to acquire the adequate amounts of iron for these processes yet avoiding the toxicity associated with free iron. In fact, disruptions of iron homeostasis account for some of the most common human diseases. Amongst these, lays hereditary hemochromatosis, which is mainly associated with mutations in the HFE gene, leading to iron overload in specific organs. HFE protein acts in iron homeostasis by regulating the expression of hepcidin in the liver. Besides the major HFE transcript, which is expressed at low levels in a wide range of human tissues, several additional alternative HFE transcripts have been described. The work presented in this dissertation addresses the characterization of HFE alternative transcripts, the biological mechanisms involved in their genesis as well as their physiological significance and regulation. A variety of human tissues was analysed and shown to express several alternatively spliced HFE transcripts. Functional analysis of the corresponding proteins revealed that alternative splicing can either generate non-functional HFE protein variants or produce a soluble HFE variant that is secreted by cells associated with beta2-microglobulin. This soluble HFE may have a vital role in iron homeostasis by acting as an agonist or antagonist of the full length HFE. Furthermore, HFE transcripts were found to be physiologically regulated by the nonsense-mediated mRNA decay (NMD), since its levels are significantly increased when depleting human cells from a key NMD effector. Through the analysis of several human tissues, it is shown that HFE mRNA expression results from alternative cleavage and polyadenylation at four different sites. This tissue-specific polyadenylation pattern seems to respond to cellular iron status, acting coordinately with NMD to fine-tune HFE’s expression levels. The regulation of HFE gene expression is here shown to be post-transcriptionally influenced by alternative splicing, alternative polyadenylation and nonsense-mediated mRNA decay mechanisms. These findings may hint future directions in the active field of iron biology research and provide interesting cues that could be translated into new therapeutics for iron homeostasis disorders through the HFE-mediated regulation of hepcidin.
