Collins, A.R.Annangi, B.Rubio, L.Marcos, R.Dorn, M.Merker, C.Estrela-Lopis, I.Cimpan, M.R.Ibrahim, M.Cimpan, E.Ostermann, M.Sauter, A.Yamani, N.E.Shaposhnikov, S.Chevillard, S.Paget, V.Grall, R.Delic, J.de-Cerio, F.G.Suarez-Merino, B.Fessard, V.Hogeveen, K.N.Fjellsbø, L.M.Pran, E.R.Brzicova, T.Topinka, J.Silva, M.J.Leite, P.E.Ribeiro, A.R.Granjeiro, J.M.Grafström, R.Prina-Mello, A.Dusinska, M.2017-03-032017-03-032016-06-07Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 Jan;9(1). doi: 10.1002/wnan.1413. Epub 2016 Jun 71939-5116http://hdl.handle.net/10400.18/4466EC FP7 NANoREG (Grant Agreement NMP4-LA-2013-310584)Free PMC Article: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5215403/With the growing numbers of nanomaterials (NMs), there is a great demand for rapid and reliable ways of testing NM safety—preferably using in vitro approaches, to avoid the ethical dilemmas associated with animal research. Data are needed for developing intelligent testing strategies for risk assessment of NMs, based on grouping and read-across approaches. The adoption of high throughput screening (HTS) and high content analysis (HCA) for NM toxicity testing allows the testing of numerous materials at different concentrations and on different types of cells, reduces the effect of inter-experimental variation, and makes substantial savings in time and cost.engNanotoxicologyHigh ThroughputGenotoxicidade AmbientalHigh throughput toxicity screening and intracellular detection of nanomaterialsjournal article10.1002/wnan.1413