Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.18/2469
Título: Use of machine leaning approaches to explore genetic and phenotypic associations for Autism Spectrum Disorder
Autor: Asif, M.
Conceição, I.C.
Machado, C.
Pereira, P.
Café, C.
Almeida, J.
Mouga, S.
Oliveira, G.
Couto, F.
Vicente, A.M.
Palavras-chave: Perturbações do Desenvolvimento Infantil e Saúde Mental
Autism Spectrum Disorder
Autism
Data: Nov-2014
Editora: Instituto Nacional de Saúde Doutor Ricardo Jorge, IP
Resumo: Introduction: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder of high complexity ASD is characterized by impaired social interaction and communication and by stereotyped behaviors, and a high heterogeneity in clinical presentation. It is hypothesized that such complex heterogeneous phenotypic behaviors are associated with genetic factors. To further dissect the complex correlations between phenotype and genotype in ASD, in the current study we used powerful machine learning algorithms, like decision trees, to integrate clinical information from diagnostic instruments like the ADI-R and the ADOS as well as adaptive behavior and cognitive scales (VABS and WISC) with genetic data (Copy Number Variants, CNVs). ASD traits in parents were assessed using specific tools SRS and PSPQ.
Descrição: Patients and parents were genotyped in the context of the Autism Genome Project
URI: http://hdl.handle.net/10400.18/2469
Aparece nas colecções:DPSPDNT - Posters/abstracts em congressos nacionais



FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.