M12
Environment
R. Sabino1, E. Segal2
1Reference Unit for Parasitic and Fungal Infections, Infectious Diseases, National Health Institute Dr.
Ricardo Jorge, Lisbon, Portugal, 2Sackler School of Medicine Tel-Aviv University, Tel-Aviv, Israel
Abstract: Exposure to environmental fungi, whether this occurs indoors or outdoors, in leisure
activities, in the workplace or in the home, is an everyday occurrence. Different types of environment
may contain variable levels of fungal particles and include viable and non-viable yeasts, conidia,
hyphal fragments, as well as fragments derived from the fungal cell wall. Mycotoxins and other
volatile organic compounds should also be considered as environmental potential hazards.
Recognition of the importance of the environment as a source of human infection has come about, at
least in part, as result of the emergence of an unprecedented number of ubiquitous environmental
fungi as major causes of disease. Exposure to environmental fungi is associated with high number of
hospital admissions, and asthma related ailments. Allergic bronchopulmonary mycosis, rhinosinusitis, asthma with fungal sensitization and hypersensitivity pneumonitis are among the
diseases more frequently associated with fungal exposure. In addition, immunocompromised
patients are at higher risk for the development of invasive infections. Changes in environmental
factors, including changing land-use patterns, use of antifungals in agriculture, and climate changes
have led to epidemiological shifts. Therefore, special attention should be paid in regard to the isolated
fungi species. Environmental fungal species such as Aspergillus spp., Mucorales, Candida spp.,
dermatophytes and dimorphic fungi will be discussed during this session; emphasizing their
importance as etiological agents of fungal infections.

M13
Diagnostics/Imaging
C. Thornton
Biosciences, University of Exeter and ISCA Diagnostics Ltd., Exeter, United Kingdom
Abstract: Bench-to-Bedside Diagnosis of Invasive Pulmonary Aspergillosis. Invasive pulmonary
aspergillosis (IPA) is a life-threatening lung disease of haematological malignancy and bone marrow
transplant patients caused by the air-borne mould Aspergillus. Current diagnostic tests for the disease
lack sensitivity or specificity, and culture of the fungus from invasive lung biopsy, considered the
gold standard for IPA detection, is slow and often not possible in critically ill patients. While
Computed Tomography (CT) is a non-invasive diagnostic procedure, it has limited clinical utility for
IPA diagnosis, but is nevertheless used as a trigger for commencing antifungal treatment in a number
of centres. Innovative approaches to the diagnosis of IPA are needed to enable diagnostic-driven
treatment with mould active drugs. In this talk, I will discuss the development of diagnostic
technologies for IPA detection based on the Aspergillus-specific mouse monoclonal antibody JF5,
including the CE-marked Aspergillus lateral-flow device (OLM Diagnostics), and CE-marked
Aspergillus-ELISA (Euroimmun AG). In addition, I will describe the humanisation of mAb JF5 for
PET/MR imaging of Aspergillus lung infections in vivo, and translation of the imaging technology to
the clinical setting. I will finish by describing the recent development of a mAb, PD7, specific to A.
fumigatus, and its use to detect a novel protein biomarker of IPA in urine.

M14
Resistance—Utilizing molecular methods
P. White
Microbiology, Public Health Wales Microbiology, Cardiff, United Kingdom
Abstract: Until recently the identification of antifungal resistance has been based on the availability of
a cultured organism to perform susceptibility testing to determine a MIC against a particular
antifungal agent. The development of molecular techniques has provided an alternative option, by
identifying genetic markers potentially associated with resistance or identifying species that may by
inherently resistant, or have an increased likelihood of resistance to particular drugs. Indeed,