Influenza burden in Portugal: seasons 2012-13 to 2016-17

DEP
Ana Rita Torres, Irina Kislaya, Susana Silva, Raquel Guiomar, Verónica Gomez, Ricardo Mexia, Baltazar Nunes, Ausenda Machado, Ana Paula Rodrigues
June 2019
Summary

Influenza burden in Portugal

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Background</td>
</tr>
<tr>
<td>2.</td>
<td>Objectives</td>
</tr>
<tr>
<td>3.</td>
<td>Methods</td>
</tr>
<tr>
<td>4.</td>
<td>Results</td>
</tr>
<tr>
<td>5.</td>
<td>Limitations</td>
</tr>
<tr>
<td>6.</td>
<td>Conclusions</td>
</tr>
</tbody>
</table>
Background

Why do we need to estimate the burden of influenza?
Objectives

Estimate seasonal influenza burden in Portugal from 2012-13 to 2016-17 using registry and surveillance data.
Methods

Time span

- *Seasons 2012/13 to 2016/17*
- *October (week 40th) to May (week 20th)*
- *Epidemic periods only*

Epidemic periods versus Entire season:
dominance of other respiratory virus outside epidemic periods \rightarrow Influenza burden overestimation
Methods

Data sources

- National Hospital Discharge Database
- Laboratory Network for the Diagnosis of Influenza
- Surveillance System
- FluMoMo

Mortality

Hospitalized
SARI positive for influenza (SARIFLU)

Primary healthcare
ILI positive for influenza (ILIFLU)
Results

Intensity

ILI incidence rate
Season/Week

B/A(H1)
A(H1)/A(H3)
B/A(H3)
A(H3)
A(H1)
Results

Lower burden: A(H1)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A(H3)</td>
<td>6,4</td>
<td>38,8</td>
<td>29,8</td>
<td>1,3</td>
<td>99,6</td>
</tr>
<tr>
<td>A(H1)</td>
<td>42,3</td>
<td>59,7</td>
<td>4,2</td>
<td>90,4</td>
<td>0,2</td>
</tr>
<tr>
<td>B</td>
<td>51,3</td>
<td>1,3</td>
<td>66,0</td>
<td>8,3</td>
<td>0,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SARIFLU</td>
<td>977</td>
<td>433</td>
<td>5030</td>
<td>158</td>
<td>4898</td>
</tr>
<tr>
<td>ILIFLU</td>
<td>10283</td>
<td>5289</td>
<td>6814</td>
<td>5240</td>
<td>6771</td>
</tr>
</tbody>
</table>

Higher burden: A(H3)

1899
Results:
Influenza burden pyramid

Mortality

SARIFLU
Hospitalized severe acute infections

ILIFLU
Medically attended influenza cases in primary care

- Mortality: 2,299
- SARIFLU: 6,880
- ILIFLU: 31,985

10^5:
- 22,1
- 66,2
- 307,9
Results

Mortality

SARIFLU
Hospitalized severe acute infections

ILIIFLU
Medically attended influenza cases in primary care

No. of medical students in Lisbon University	2,299
No. of workers in PT of the largest hydroelectric	6,880
Half of the capacity of the largest stadium in Portugal	31,985
Limitations

- Underestimated ILIFLU
- Direct comparisons
- Case definitions
- Data sources
- SARI delay
Conclusions

• Lower burden of influenza: seasons with A(H1) virus circulation dominance

• Higher burden: seasons with influenza A(H3) virus co-dominance
Thank you, for your attention!