dystrophy. This report also shows that BMD may present with a normal CK.

doi:10.1016/j.nmd.2011.06.761

PI.2
Phenotypic profile of dystrophinopathy patients with deletion of exons 3-7 of the dystrophin gene
B.L. Wong*, S.Y. Hu*, P. Morehart*, L.H. Cripe*, M.E. Walker*
* Cincinnati Children’s Hospital Medical Center, Child Neurology, Cincinnati, United States; 
† Cincinnati Children’s Hospital Medical Center, Cardiology, Cincinnati, United States; 
‡ Cincinnati Children’s Hospital Medical Center, Genetics, Cincinnati, United States

Deletion of exons 3-7 is an out of frame deletion predictive of Duchenne muscular dystrophy (DMD) but is commonly associated with a milder phenotype. An accurate clinical profile of such patients would be of value for prognosis and patient selection for clinical trials. To characterize the clinical phenotype of dystrophinopathy patients with deletion of exons 3-7, IRB approved retrospective case series' review. Patient characteristics: 14 ambulatory males with deletion of exons 3-7. Mean age at last visit: 11.1 yrs (range 5.7-15.8); mean CK (4-10 yr) = 13310 (2459-26,020); FH DMD in 6/14 - mean age of loss of ambulation (LOA) 12.9 yr (10-18) in 5; and deaths at 19-44 yrs. Muscle biopsy (3/14) - decreased dystrophin. MRI pelvic muscle (13/14) - mild to moderate fatty changes. Steroid therapy (daily deflazocort): start mean age 7.1 (3.0-11.1 yr); mean duration 3.9 yr (0.5-12.8); mean dose at last visit 0.5 mg/kg/day (0.2-0.8). Neuromotor function: history of delayed walking >16 months in 2/14 (brothers with hypotonia); 12/14 with onset of motor abnormalities between ages 1.5-5 and 2/14 between ages 6-8; presenting difficulties - toe-walking (4/13); slow/abnormal run (8/13); fatigue (1/13); difficulty in rising from the floor - 0/14. Gower's maneuver (from sit to stand, n = 13) - mean 1.8 s (1.1-2.9); 30 feet run (n = 14) = 3.79 s (2.8-6.72); 13/14 with ability to jump with both feet and climb up steps with reciprocating pattern; 14/14 with antigravity neck and trunk flexion from supine; 12/14 able to hop on one leg. Cardiopulmonary function normal 14/14. Neurocognitive function: normal 11/14. Patients with deletion of exons 3-7 who present with mild motor difficulties by age 5 have minimal motor limitations on follow up (on steroid therapy) and normal cardiopulmonary function. This clinical profile of a milder phenotype would have implications for prognosis and clinical trials.

doi:10.1016/j.nmd.2011.06.762

PI.3
Spectrum of point mutations in Czech DMD/BMD patients and their phenotypic outcome
M. Hermanova*, E. Zapletalova*, J. Sedlacek*, J. Zamecnik*, P. Vondracek*, L. Fajtova*
* St. Anne's University Hospital and University Hospital Brno, Department of Pathology, Brno, Czech Republic; 
† University Hospital Brno and Masaryk University Brno, Centre of Molecular Biology and Gene Therapy, Brno, Czech Republic; 
‡ Charles University, 2nd Medical Faculty and University Hospital Motol, Department of Pathology and Molecular Medicine, Prague, Czech Republic; 
§ University Hospital Brno and Masaryk University Brno, Department of Pediatric Neurology, Brno, Czech Republic

Duchenne and milder Becker muscular dystrophies (DMD/BMD) are X-linked recessive neuromuscular diseases, both caused by mutations in the DMD gene. DMD is typically associated with mutations causing premature stop codon creation, while BMD is usually related to in-frame deletions or duplications. In our study population, excluding 60% of deletions and 5% of duplications detected in DMD gene, we identified 63 different point mutations in 69 DMD/BMD patients and DMD/BMD female carriers. For mutation screening on the RNA level, we used reverse transcription-PCR, protein truncation test, and DNA sequencing. For screening on DNA level, we used PCR and sequencing. We describe patients with a mutation creating a premature termination codon but with a mild BMD phenotype, which present three different ways of resolving the DMD phenotype. In one patient we detected the insertion of a repetitive sequence AluY as in intron 56, which led to skipping of exon 57. On the other hand, we present two patients with mutations deep inside the intron leading to severe DMD phenotype by creating pseudogene and leading to frame-shift. Among presented mutations, there are 32, which are unique for Czech population. This work was supported by Grants MSMT LC06023 and 2B08060.

doi:10.1016/j.nmd.2011.06.763

PI.4
Molecular profile of 307 Portuguese patients with dystrophinopathies, including 39 new variants
* Centro de Genética Médica J. Magalhães, INS, Departamento de Genética, Porto, Portugal; 
† Hospital de Crianças Maria PiaCHP, Conselho de Neuroumulsculares, Porto, Portugal; 
‡ Hospital Pediátrico de CoimbraCHIC, Centro de Desenvolvimento da Criança Luís Borges, Coimbra, Portugal; 
§ Hospital Santo MariaCHILN, Universidade de Neuropsiquiatria, Lisboa, Portugal; 
‖ Hospital D. EstefâniaCHIC, Conselho de Neurologia Pediatría, Porto, Portugal; 
¶ Faculdade de Farmácia da Universidade do Porto, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Porto, Portugal

Mutations in the dystrophin gene (DMD) give rise to the allelic Duchenne or Becker muscular dystrophies. Besides providing a differential diagnosis for adequate clinical follow-up and management, the molecular characterization of these patients is becoming increasingly important in light of the recent and promising mutation-based therapeutic approaches. Due to the size and complexity of DMD, as well as the diversity of mutation types, molecular analysis requires a combination of techniques that enable the detection of gross deletions, duplications and the more subtle point mutations. In the course of our diagnostic service provided on a national basis, a total of 307 patients, representing 282 unrelated families, have been characterized at the molecular level. We identified 174 different mutations, where the distribution according to type was found to be in agreement with that reported in the literature for large cohorts. Also, as expected, approximately 1/3 of the cases were shown to be de novo occurrences, as ascertained among the “sporadic” cases (25/82). These new-mutations were comprised by 18% deletions, 6% duplications and 6% point mutations. We describe a total of thirty-nine undocumented variants, three of which were detected in obligate carrier female relatives of deceased patients. These new variants include 9 gross deletions, 8 gross duplications and 22 smaller mutations (deletions, duplications, deletions rearrangements and nonsense or splice-site substitutions). Comprehensive analysis often involved expression studies at the mRNA level to help delineate breakpoint junctions, to identify altered splicing and ultimately to provide an explanation for apparent exceptions to the reading frame rule. This detailed molecular characterization is also important for the purpose of including our patients in the DMD National Registry, which will be articulated with the TREAT-NMD Global Database.

doi:10.1016/j.nmd.2011.06.764