Abstracts of the ISPD 22nd International Conference on Prenatal Diagnosis and Therapy

Antwerp, Belgium

8–11 July 2018

Disclaimer
This abstract book has been produced using author-supplied copy. Editing has been restricted to some corrections of spelling and style where appropriate. No responsibility is assumed for any claims, instructions, methods or drug dosages contained in the abstracts: it is recommended that these are verified independently.
3 Oral Abstracts of the ISPD 22nd International Conference on Prenatal Diagnosis and Therapy, Antwerp, Belgium, July 8–11, 2018
20 Poster Abstracts of the 22nd International Conference on Prenatal Diagnosis and Therapy, 8–11 July 2018, Antwerp, Belgium
115 ISPD 2018 Abstract Author Index
P1–9 | 47,XY,+del (X)(q21.31)/46,XY mosaicism in prenatal diagnosis—Case report of a rare event

Cristina Ferreira¹; Ana Tarelho¹; Bárbara Marques²; Silvia Serafini¹; Sónia Pedro⁴; Ângela Ferreira⁴; Hildeberto Correia⁶

1 Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal; 2 Serviço de Obstetrícia/Diagnóstico Pré-Natal, Hospital de Faro EPE, Faro, Portugal

Objectives: Aneuploidies involving the sex chromosomes are the most common anomalies in humans. In many cases, these anomalies are present in mosaic and may involve either the whole chromosome or just part of it. These anomalies constitute a challenge in prenatal diagnosis because it is generally very difficult to establish a reliable genotype-phenotype correlation. Here, we report a rare event of a mosaic in which one cell line carries an additional abnormal X chromosome, with a terminal deletion at q21.31 region, and a normal XY constitution in the majority of the cells.

Methods: A healthy 36-year-old G1P1 woman was referred for prenatal diagnosis at 11 + 5 weeks of gestation for increased nuchal translucency. Chorionic villus biopsy was performed, and molecular rapid aneuploidy result indicated an anomalous situation for the X chromosome in a male fetus. As the material was not sufficient to establish a culture, an amniocentesis was performed at 17 + 3 weeks and karyotyping and microarray were performed in order to characterize the anomalous result.

Results: The results obtained indicated the presence of a mosaic involving an extra X chromosome with a terminal deletion, [47,XY,+del (Xq)/46,XY, arr [GRCh37] Xp22.33q21.31(169921_89283237)x1–2], which is compatible with a Klinefelter syndrome variant.

Conclusions: Pregnancies affected by X chromosome aneuploidies diagnosed prenatally are at an increased risk of adverse fetal and neonatal outcomes. High quality information is critical for informed decision-making in pregnancy following a prenatal diagnosis of sex chromosome aneuploidy.

P1–11 | High resolution chromosomal microarrays in the general prenatal population: Pathogenic CNVs and VOUS in a 2016 state-wide cohort

Jane Halliday; Alice Poulton; Lisa Hui

Murdoch Childrens Research Institute, Parkville, VIC, Australia

Objectives: Since the publication of a landmark study by Wapner et al. showing the advantages of a targeted chromosomal microarray (CMA) over karyotype for prenatal diagnosis, CMA utilization has expanded rapidly. The yield of CMA and rates of variants of uncertain/unknown significance (VOUS) vary according to the CMA platform and indications for testing. This study aimed to analyse the diagnostic yield of whole genome high resolution SNP CMA in a state-wide cohort and compare this to the yield reported in the 2012 study.

P1–12 | ATAD3A deletions: A challenge in prenatal diagnosis

Mariette Hoffr¹; Cacha Peeters-Schoo³; Tamara Kooioppm³; Phoebe Adama van Scheltema²; Frans Klumper³; Sheila Everwijn¹; Marije Koopmans³; Sylke Steggerda³; Marlo van der Knaap³; Frank Baas²; Gijs Santen³; Claudia Ruivenkamp³

¹Leiden University Medical Center, Leiden, The Netherlands; ²Dept of Neurology, LUMC, Leiden, The Netherlands; ³Dept of Clinical Genetics, LUMC, Leiden, The Netherlands; ⁴Dept of Obstetrics and Fetal Diagnosis, LUMC, Leiden, The Netherlands; ⁵VU University Medical Center, Amsterdam, The Netherlands

Objectives: The ATAD3 gene cluster is part of the ATPase family AAA-domain containing proteins consisting of three paralogs, ATAD3A, ATAD3B, and ATAD3C located in tandem on chromosome 1p36.33. The ATAD3 genes encode mitochondrial membrane proteins that contribute to the stabilization of large-mitochondrial protein complexes. Recently, deletions in the ATAD3 gene cluster...