Mitochondrial disorders: insights into diagnosis and management in the new era of genomic medicine

Nogueira C1,2, Pereira C2, Silva L3, Leão Teles E4, Rodrigues E4, Campos T4, Janeiro P5, Costa C5, Gaspar A5, Dupont J5, Soares G6, Bandeira A6, Martins E6, Magalhães M6, Santos H7, Vilarinho L1,2

1 Unidade I&D, Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal; 2Unidade Rastreamento Neonatal Metabolismo e Genética, Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal; 3Unidade Tecnologia e Inovação, Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; 4Centro Hospitalar São João, EPE, Porto, Portugal; 5Centro Hospitalar Lisboa Norte, EPE, Porto, Portugal; 6Centro Hospitalar Porto, EPE, Porto, Portugal; 7Centro Hospitalar Vila Nova de Gaia, EPE, Porto, Portugal

e-mail: celia.nogueira@insa.min-saude.pt

Introduction
Mitochondrial diseases are a group of rare inherited disorders characterized by extreme phenotypic heterogeneity that can be transmitted by any mode of inheritance, with hitherto no effective therapy options. The recent evaluations of Next Generation Sequencing for mitochondrial disorders have shown that this methodology is more likely to provide a diagnosis, being quicker and cheaper. Our group, pioneer in the study of these disorders in our country, has been studying several patients with suspicious diagnosis of mitochondrial disorders. The biochemical and molecular approach used, allowed the characterization of many of these patients, however, some of them still remain without molecular diagnosis.

Objectives
The overall aim of our research project* was to develop a Next Generation Sequencing strategy to identify nuclear disease causing-mutations in patients suspicious of mitochondrial disorders but without molecular etiology.

Methods
Next Generation Sequencing was performed in a MiSeq Illumina instrument using a custom mitochondrial gene panel with around 200 genes involved in mitochondria metabolism. Libraries were prepared using SureSelect QXT target enrichment system from Agilent.

Results
Until now, we analyzed 20 patients, identifying disease related mutations in six of them. These mutations were confirmed by Sanger Sequencing in the index cases and in their relatives. Our project is ongoing and the patients undiagnosed after this first approach will be further selected for Whole Exome Sequencing.

Discussion and Conclusion
This study is contributing to i) identify the pathogenic mutations in the studied patients (6/20 – 30%), ii) expand the mutational spectrum in the etiology of these disorders, and iii) propose an accurate genetic counseling. Custom design panels have been widely used for molecular heterogeneous disorders however, the development of this panel will be innovative in our country strengthening our center as a national reference for the study and research of mitochondrial disorders.

*This Research Project is support by FCT (Fundação da Ciência e Tecnologia) (PTDC/DTP-PIC/2220/2014)