Microbiology of beach sands and its Impact on Human Health

A systematic review

J Brandão DRS, S Namorado, PhD; M Neto, MD, PhD

The National Institute of Health Doutor Ricardo Jorge
Department of Environmental Health / Department of Epidemiology
Introduction
Beach sands

• “From a recreational viewpoint, sand beaches are sought after. Especially in higher latitudes, a significant percentage of time is spent on the beach itself rather than in the water.”

• “A number of genera and species that may be encountered through contact with sand are potential pathogens. Accordingly concern has been expressed that beach sand may act as reservoir of vectors of infection.”

Regulation

- The European Bathing water Directive (Directive 2006/7/EC of the European Parliament and the Council of 15 February 2006) contemplates surrounding areas to bathing waters because those may influence water quality but....

- Doesn’t specify sand-specific contaminants or sand as its own entity

There is no legislation or regulation in Europe or elsewhere in the world!
FAQ: Can sunlight clean up?

No!

- **2009 Mika et al.** showed that irradiation during day time doesn’t help reducing E. coli in the sand;

- **2012 Heaney et al.** showed positive relationship between sand-contact activities and enteric illness;

- Fungi are very resilient, even in drier climates and bacteria lurk under the surface
Different perspectives
Presence of fungi in environmental and clinical studies
Example of a fungal analysis (with low diversity)

Malt plates inoculated with sand wash 100 rpm/30’, 1:1 w/v (10^0 and 10^-1 dilutions) 5 days growth at 27.5(+/-2.5) °C – mainly *Penicillium spp* and *Aspergillus fumigatus* visible
Mycology Parameters:

1. Yeasts
 - 60 cfu/g
2. Potential pathogenic moulds (filamentous fungi)
 - 85 cfu/g
3. Dermatophytes
 - 15 cfu/g

Bacteriology Parameters:

1. Total coliforms
 - 100 cfu/g
2. *E. coli*
 - 20 cfu/g
3. *Enterococci*
 - 20 cfu/g

Reference values for sand quality assessment based on national means.
Beach managers were instructed on how to control contaminant levels.

Result: Drastic reduction of contaminant levels from the first sampling (pre-bathing season) to the following two (during bathing season) after the first year of the project (2006)
Factors that positively influence the quality of beach sand

• **Garbage removal** - Frequent removal of litter and garbage from sand and neighbouring areas;

• **Garbage receptacles** - Number of garbage receptacles appropriate for the length of the beach;

• **Sand treatment** - based on experience of one region with weekly iodine spraying (this statement does not express the point of view of the authors);

• **Surroundings** - Identification and treatment of neighbouring contaminated areas
Factors that negatively influence the quality of beach sand

- Over-use of beach
- Admission of pets
- Accumulation of garbage
- Abandonment of remains from fishing
- Rodents and prowling animals
Beach sand and the potential for infectious disease transmission: observations and recommendations

HELENA M. SOLO-GABRIELE, VALERIE J. HARWOOD, DAVID KAY, ROGER S. FUJIOKA, MICHAEL J. SADOWSKY, RICHARD L. WHITMAN, ANDREW WITHER, MANUELA CANIÇA, RITA CARVALHO DA FONSECA, AIDA DUARTE, THOMAS A. EDGE, MARIA J. GARGATE, NINA GUDE-CIMERMAN, FERRY HAGEN, SANDRA L. MCLELLAN, ALEXANDRA NOGUEIRA DA SILVA, MONIKA NOVAK BABIĆ, SUSANA PRADA, RAQUEL RODRIGUES, DANIELA ROMÃO, RAQUEL SABINO, ROBERT A. SAMSON, ESTHER SEGAL, CHRISTOPHER STALEY, HUW D. TAYLOR, CRISTINA VERÍSSIMO, CARLA VIEGAS, HELENA BARROSO, AND JOÃO C. BRANDÃO

1University of Miami Center for Oceans and Human Health, Key Biscayne, FL 33149, USA, 2Department of Civil, Architectural, Environmental Engineering, University of Miami, Coral Gables, FL 33146, USA, 3Department of Integrative Biology, University of South Florida, SCA 110, 4202 E. Fowler Ave., Tampa, FL 33620, USA, 4Centre for Research into Environment and Health, Inst of Geography and Earth Sciences, Aberystwyth University, Aberystwyth SY24 3DB, UK, 5Water Resources Research Center, University of Hawaii, Honolulu, HI 96822, USA, 6Department of Soil, Water, & Climate, and BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA, 7Former Chief, Lake Michigan Ecological Research Station, USGS, 1088 N 350 E., Chester IN 46304, USA, 8National Oceanography Centre, Liverpool L3 5DA, UK, 9National Reference Laboratory for Antibiotic Resistance – Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz 1649-016 Lisbon, Portugal

White paper on sand monitorization Solo-Gabriele et al. 2015
What’s missing?

• More epidemiological studies to demonstrate the need to regulate;
• Regulation;
• Confirm efficiency of regulation
Fungal Epidemiological study (allergies and superficial infections)

- Most fungi are opportunistic organisms.
- Quantitative Microbial Risk Assessment (QMRA) rate is low.
- Onset of infection takes days to weeks (beach users tend to go home and disperse making it almost impossible to assess outbreaks)
- Solution? Metasearch! What can be found in the literature that can suggest what the outcome of the epistudy would be.
Research question

• Is there a relationship between exposure to beach sand and human disease due to microorganisms? (and by which agentes).
Methods
<table>
<thead>
<tr>
<th>Revision criteria</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study type</td>
<td>Observational</td>
<td>Qualitative, case studies, systematic reviews.</td>
</tr>
<tr>
<td>População</td>
<td>Young and Senior</td>
<td>Active (>15 - <65)</td>
</tr>
<tr>
<td>Exposition</td>
<td>Contaminated water</td>
<td>Swimming pools</td>
</tr>
<tr>
<td></td>
<td>Contaminated sands</td>
<td>Health club</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vírus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parasites</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Gastrintestinal disease</td>
<td>Systemic disease</td>
</tr>
<tr>
<td></td>
<td>Dermatomycoses</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PICO - Population, Interventio/Exposure, Comparison/Control, Outcome - adaptad</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Search strategy

• MEDLINE, via PUBMED;
• GIDEON (Global Infectious Diseases database);
• Google Scholar.

• 3 queries on Title/Abstract:
 • "beach sand"
 • "mycology"","fungi""
 • “gastrointestinal",
 • Manual searches in some specific journals;

• No temporal limits.
Quality criteria (STROBE, adap)

- Sample information and selection method:
 - Sample Type
 - Collection method;
- Information on the study design
 - Number of observations
 - Time spacing of observations
 - Total observation period
- Methodological aspects
 - Indication of the purpose of the study
 - Presentation of research question / hypotheses;
 - Adequacy of the statistical method used for the data type and study design;
- Indication of bias
- Indication of study limitations
Results
Flow diagram for articles selection

- MEDLINE: 26
- Gideon: 0
- GOOGLE: 21

- Broad selection: 24
- Duplicated: 9
- Eligibility criteria: 23
- Final selection: 1

Total: 47
Fecal indicators in sand, sand contact, and risk of enteric illness among beachgoers.

Abstract

BACKGROUND: Beach sand can harbor fecal indicator organisms and pathogens, but enteric illness risk associated with sand contact remains unclear.

METHODS: In 2007, visitors at 2 recreational marine beaches were asked on the day of their visit about sand contact. Ten to 12 days later, participants answered questions about health symptoms since the visit. F+ coliphage, Enterococcus, Bacteroidales, fecal Bacteroides, and Clostridium spp. in wet sand were measured using culture and molecular methods.

RESULTS: We analyzed 144 wet sand samples and completed 4999 interviews. Adjusted odds ratios (aORs) were computed, comparing those in the highest tertile of fecal indicator exposure with those who reported no sand contact. Among those digging in sand compared with those not digging in sand, a molecular measure of Enterococcus spp. (calibrator cell equivalents/g) in sand was positively associated with gastrointestinal (GI) illness (aOR = 2.0 [95% confidence interval (CI) = 1.2-3.2]) and diarrhea (2.4 [1.4-4.2]). Among those buried in sand, point estimates were greater for GI illness (3.3 [1.3-7.9]) and diarrhea (4.9 [1.8-13]). Positive associations were also observed for culture-based Enterococcus (colony-forming units/g) with GI illness (aOR digging = 1.7 [1.1-2.7]) and diarrhea (2.1 [1.3-3.4]). Associations were not found among nonswimmers with sand exposure.

CONCLUSIONS: We observed a positive relationship between sand-contact activities and enteric illness as a function of concentrations of fecal microbial pollution in beach sand.
Conclusions
Conclusions

• The list of documents that matched the criteria is minute;

• All papers report either detection of fungal agents or alert to the possibility of infections cause by them;

• The review study did not resolve the need for a planned epidemiological study (at this point in time).
Thank you!!!

Barcelona, 7th September 2017

joao.brandao@insa.min-saude.pt
sonia.namorado@insa.pt
mariana.neto@insa.pt