European Helicobacter and Microbiota Study Group

XXIXth International Workshop on Helicobacter & Microbiota in Inflammation & Cancer

Magdeburg, Germany
15–17 September 2016

Accepted Abstracts

Disclaimer
This abstract supplement has been produced using author-supplied copy. Editing has been restricted to some corrections of spelling and style where appropriate. No responsibility is assumed for any claims, instructions, methods or drug dosages contained in the abstracts; it is recommended that these are verified independently. This abstract book was correct at the time of printing and therefore does not reflect any programme changes after the date of printing.
The European Helicobacter and Microbiota Study Group

President
Peter Malfertheiner, Germany

Members
Leif P. Andersen, Denmark
Anthony Axon, United Kingdom
Lars Engstrand, Sweden
Bram Flahou, Belgium
Antonio Gasbarrini, Italy
Javier P. Gisbert, Spain
Ernst Kuipers, The Netherlands
Marcis Leja, Latvia
José C. Machado, Portugal
Francisco Mégraud, France
Colm A. O’Morain, Ireland
Ari P. Rämö, Finland
Theodore Rokkas, Greece

Emeritus Members
Michel A.L. Deltenre, Belgium
Giovanni Gasbarrini, Italy
Alexander M. Hirschl, Austria
José M. Pajares García, Spain

Honorary Members
Franco Bazzoli, Italy
James G. Fox, United States
David Y. Graham, United States
Guido N.J. Tytgat, The Netherlands

Corresponding Fellows
Niyaz Ahmed, India
Dmitry Bordin, Russia
Toshio Fujioka, Japan
Varocha Mahachai, Thailand

Table of contents
Plenary Workshops
PW1 Plenary Workshop 1
PW2 Plenary Workshop 2
PW3 Plenary Workshop 3: Microbiota

Parallel Workshops
W1 Diagnosis, Epidemiology & Pediatrics
W2 Inflammation, Immunity, Vaccines, Host interaction
W3 Treatment & Drug Resistance
W4 Virulence Factors, Pathogenesis and Genomics
W5 Gastric Cancer and Carcinogenesis
W6 Helicobacters and Extragastric Diseases

Posters
P01 Diagnosis of Helicobacter infection
P02 Epidemiology
P03 Paediatrics
P04 Virulence factors and pathogenesis of Helicobacter infection
P05 Microbiology and genomics of Helicobacter
P06 Gastric cancer and cancerogenesis
P07 Treatment of Helicobacter infection
P08 Drug resistance and clinical issues
P09 Inflammation, immunity, vaccines and host interaction
P10 Helicobacter and extragastrroduodenal disease
P11 Microbiota 1
P12 Microbiota 2

Author Index
Keyword Index

© The Authors. Helicobacter © 2016 John Wiley & Sons Ltd
wileyonlinelibrary.com/journal/hel
Helicobacter 2016; 21 (Suppl. 1): 69–177

†Deceased
Conclusions: Helicobacter pylori vacA polymorphism strongly correlates with the serological CagA-response to H. pylori cagA+ strains. Furthermore, vacA genotype was the main determinant of inflammatory potential in ex vivo and in vivo settings.

W4.5 | Genomes of Helicobacter pylori prophages

*Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Instituto de Medicina Molecular, Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
†Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
‡National Reference Laboratory of Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
§Innovation and Technology Unit, Department of Human Genetics, National Institute of Health, Lisbon, Portugal
¶Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
***Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
††College of Medicine, Swansea University, Institute of Life Science, Swansea, UK, Swansea, UK
‡‡Université de Bordeaux, Centre National de Référence des Campylobacters et Helicobacters, Bordeaux, France
§§UM Marshall Centre and Dep of Medical Microbiology, University of Malaysia, Kuala Lumpur, Malaysia
***INSERM U1053, Bordeaux, France

Nearly 20% of the Helicobacter pylori genomes carry prophages genes. Recently we were able to clearly differentiate four populations of prophages according to geographical origin of host strain. Interestingly we were able to discriminate between Northern Europe and Southern Europe using a phage sequence typing based on 2 prophage genes of H. pylori (integrase and holin) but present in only a minority of strains. We hypothesize that strains carrying these genes, located towards the 5′ and 3′ end of the prophage genome, would have an intact prophage. For this, we used Miseq from Illumina to sequence 28 H. pylori clinical isolates from distinct diseases and geographic origins, spreading from gastritis to gastric cancer and covering most continents. We were able to find prophages in all these sequenced genomes, presumably 82% of them are intact prophages, suggesting that integrase and holin genes are good markers for the presence of intact prophages. Prophage genome size ranged in length from 22.6 to 33.0 Kbp and consisted of 27–39 open reading frames. A 36.6% GC percentage was found in prophages in opposition to 39% in H. pylori genome. The phage insertion site was found to be relatively conserved. Furthermore, prophage genomes presented a strong phylogeographic pattern, evidencing four distinctive clusters, comprising one African, one Asian and two European prophage populations.

W4.6 | Genome dynamics and functional molecular infection epidemiology of multidrug resistant Helicobacter pullorum isolated from retail wet market poultry in India
S. Qumar; M. Majid; N. Ahmed
University of Hyderabad, Hyderabad, India

Chicken are a known source of some of the life threatening food borne and zoonotic infections. Inappropriate and indiscriminate use of antimicrobials in livestock feed has increased prevalence of multidrug resistant bacteria of epidemic potentials. We present whole genome based molecular epidemiological analyses entailing phenotypic as well as genomic characteristics of eleven H. pullorum strains isolated from broiler and free range chicken from retail wet markets of Hyderabad city in India. Antimicrobial susceptibility tests revealed all isolates to be resistant to various antibiotic classes such as fluoroquinolones, cephalosporins, sulfonamides and macrolides, irrespective of their isolation sources. All isolates were also found to be 100% ESBL producers and were resistant to beta lactamase inhibitor, clavulanate. Whole genome sequencing and comparative genomics analysis of all the 11 isolates revealed presence of five to six well characterized antimicrobial resistance genes including those encoding RND efflux pump(s). Phylogeny when combined with pan genome dynamics revealed a remarkable degree of genetic diversity among isolates from free range chicken, whereas, a high degree of clonality was observed among broiler chicken isolates. Analyses of all the available H. pullorum genomes including our isolates (n = 16), identified a number of important virulence genes and revealed some important genetic traits of H. pullorum such as its core gene pool characteristics, inventory of prophages and abundance of genomic islands etc. These observations would be able to strengthen functional molecular infection epidemiology of non-pyloric Helicobacters such as H. pullorum by unraveling their evolution and acquisition in chicken and possible transmissibility to humans.

W5 GASTRIC CANCER AND CARCINOGENESIS

W5.1 | Activation of the Hippo/YAP signaling pathway in gastric epithelial cells in response to Helicobacter pylori infection
S. Molina-Castro*; C. Staedel†; S. Fernandez*; J. Giraud*; E. Bessède*; P. Lehours*; F. Mégraud*; C. Varon*