Multilocus sequencing typing as a tool to investigate childhood *Haemophilus influenzae* invasive disease in Portugal

Bettencourt C¹, Borges V², Gonçalo-Marques J³, Cunha F¹, Bajanca-Lavado P¹, on behalf of Portuguese Study Group of Invasive *Haemophilus influenzae* Disease of the Pediatric Infectious Disease Society

¹National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Infectious Diseases Department, ²National Reference Laboratory for *Haemophilus influenzae*, Bioinformatics Unit, ³Paediatrics Department of Hospital de Santa Maria, Lisbon, Portugal; ⁴Paediatrics Department of Hospital de Vila Franca de Xira, Portugal

paula.lavado@insa.min-saude.pt

INTRODUCTION

Haemophilus influenzae is an important cause of serious childhood invasive disease including meningitis and septicemia. The presence or absence of a polysaccharide capsule divides the bacteria into two different groups. Encapsulated *H. influenzae* strains are classified into six serotypes: a, b, c, d, e, f (1).

Before the introduction of conjugate vaccine against *H. influenzae* type b (Hib), this serotype was the major responsible for invasive infection, especially in young children. However, the implementation of Hib vaccination in the National Vaccination Program, in the year 2000, turned to a drastic reduction of Hib invasive disease, which is now due to non-encapsulated strains (NCHi), with encapsulated strains being rarely characterized (2,3).

Multilocus Sequencing Typing (MLST) is a powerful method that allows a precise and unambiguous characterization of *H. influenzae* genotypes. It combines advances in sequencing and bioinformatics to establish population genetics. It’s also increasingly applied as a routine typing tool that enables international comparisons of isolates (4,5,6).

A partnership between the Reference Laboratory for *H. influenzae* of the National Institute of Health and the Society for Paediatric Infectious Diseases was established in 2010, with the objective of characterizing invasive infection in children, at both clinical and laboratory level.

The objective of the present study was to study genotypic isolates by MLST to characterize the disease.

METHODS

Haemophilus influenzae strains

- A total of 41 *H. influenzae* strains were isolated from children (≥ 18 years old) with invasive disease, from 2010 to 2015, evolving paediatricians and clinicians in hospitals all over the country.

Serotyping was performed by PCR amplification of *bexA* gene; capsule strains (a-f) were identified by amplification of capsule-specific genes using primers and conditions described in the literature (7).

MLST was performed by amplifying and sequencing internal fragments of the 7 housekeeping genes (adk, atpG, fucB, lucc, mdh, pgI and recA) (8).

Sequences were analyzed and submitted to the MLST website http://pubmlst.org/hinfluenzae/.

RESULTS

DISCUSSION AND CONCLUSION

Results of this study reveals differences in invasive infection after the introduction of Hib vaccine:

- younger children are mostly affected (less than 1 years old) (Figure 1);
- septicaemias predominate over meningitis cases (Figure 2);
- most cases are due to NC strains (27.41%); 14 isolates (34%) are capsulated and characterized as follows: two serotype a (5%), 10 b (24%) and two f (5%) (Figure 3);
- MLST typing shows high genetic variability among NC isolates: 24/27 (89%) are characterized in different sequence types (STs), with four new STs, represented by previously unidentified allele combinations. In opposition, capsule strains are very clonal: all 10 Hib are assigned to CC9 (eight strains ST6, one ST 1149, one ST 190), the two Hai strains are assigned to CC 23 (ST 23 and the two Hf belong to CC124 (ST 12 and ST 1188) (Figure 4).

Comparing these MLST results with the ones obtained in another study performed in our laboratory (3), with strains isolated from invasive disease in children from 2002 to 2009 (Figure 5), we also observed a genetic diversity among NC strains. In capsulated strains there were a few differences: one of the 7 serotype b was characterized as ST4, an ST that is not included in CC6; the serotype a strain was assigned to ST 47, again a ST that is not included in CC23. We also described in that period the first invasive serotype d strain, isolated from a child with meningitis (8).

- Our results, that shows a genetic diversity of NC isolates in opposite to a greater clonality of capsulated strains is in accordance with studies from other researchers (5,9,10).
- Although MLST has a good discriminatory power, the changes in the housekeeping genes may be too slow to afford enough discrimination within each of serotypes, which limits its use in epidemiological investigations. This can be overcome if MLST is based on more variable genes known to play a role in virulence (9,12).
- In resume, invasive disease among Portuguese children is nowadays due to NC and highly genetically diverse strains. Nevertheless, we are concerned about Hib disease despite the higher vaccine coverage.

In order to monitor the evolving dynamics of this pathogen and the epidemiology of invasive disease ongoing surveillance is needed. In a near future we should considered the whole genome sequence analysis as a tool to achieve the true magnitude of this problem.