McArdle disease: mutational spectrum of Portuguese patients

Rocha H1, Lopes A1, Soares G2, Negrão L3, Coelho T1, Chorão R3, Lourenço T3 and Vilarinho L1.

1 - Instituto Nacional de Saúde Doutor Ricardo Jorge, Departamento de Genética Humana, Unidade de Rastreamento Neonatal, Metabolismo e Genética; 2 - Centro Hospitalar do Porto; 3 - Centro Hospitalar e Universitário de Coimbra; 4 - Centro Hospitalar do Porto; 5 - Centro Hospitalar de Vila Real; 6 - Centro Hospitalar de Lisboa Ocidental, Hosp. Egas Moniz

INTRODUCTION

McArdle disease or Glycogen Storage Disease type V (GSD V; myophosphorylase deficiency; MIM 232600) is an inborn error of glycogen metabolism, caused by a deficiency in muscle specific isoform of glycogen phosphorylase. This metabolic myopathy is characterised by exercise intolerance, myalgia, cramps and episodic myoglobinuria, symptoms that usually appear during the second or third decade of life.

The diagnosis was typically made in muscle biopsy by histological analysis (demonstration of subsarcolemmal glycogen deposits and negative histochemical stain for phosphorylase) and/or measurement of muscle phosphorylase activity. Although since 1984, when the gene of muscle isoform of phosphorylase (myophosphorylase) was cloned and assigned to chromosome 11 (11q13), molecular genetics analysis has been more and more used to confirm the clinical diagnosis. Until now, 146 pathogenic mutations have been described (according to HGMD2) including nonsense, missense and frameshift mutations. High genetic heterogeneity is a hallmark of McArdle disease, with a very frequent common mutation among Caucasian populations – R50X (present in about 60% of the mutated alleles) – and several rare mutations, without a clear genotype/phenotype correlation (Nogales-Gadea G et al, 2015). The molecular studies of PYGM gene allow the diagnosis of most McArdle patients without the need of a muscle biopsy (with great benefits to patients), the detection of carriers (providing valuable information for genetic counselling) and increase the knowledge on the molecular pathology of this disorder.

The authors present molecular data from the characterisation of 51 Portuguese patients, from 40 families, with McArdle disease.

RESULTS

Our results reveal the presence of the R50X mutation in 47 of the alleles of the index cases (55%), in accordance to what has been described to other Caucasian populations. A total of 12 different mutations in PYGM were identified, one of them a novel mutation (p.T677I), considered damaging by in silico analysis (polyphen-2).

CONCLUSIONS

These results allow us the confirmation that in Portuguese population, as is described for other Caucasian populations, the R50X mutation is present in the great majority of the mutated alleles. The realisation of molecular studies, in patients with a strong clinical suspicion of McArdle disease, avoids in the majority of the cases the need of a muscle biopsy for diagnosis confirmation, and also provide valuable information for genetic counselling and to increase the knowledge about the molecular pathology of this disorder.

ACKNOWLEDGEMENTS

The authors thanks to all clinicians that send the patients to study, as well as to the patients themselves and their families.

MATERIAL AND METHODS

We studied 51 patients with GSD V, McArdle disease, by screening mutations on PYGM gene. Genomic DNA samples, from index cases, was isolated from peripheral blood and this screening was made using polymerase chain reaction (PCR) and primers designed by us. PCR amplification and sequence analysis of all exons and intron/exon boundaries were visualized by electrophoresis on a 1% agarose, then purified and directly sequenced using the ABI Prism3130XL Genetic Analyser.

References: