Introduction

Helicobacter pylori is a gram-negative gastric pathogen possessing a large set of outer membrane proteins (OMPs), which mediate important pathogen-host interactions. The *homC* gene codes for a *H. pylori* OMP and belongs to the *hom* family, together with the recently described *homB* and *homA* genes. *homB* is implicated in bacterial adherence and in IL-8 activation. No specific function of *homC* is known yet.

Materials and Methods

Bacterial strains:
- 26 *homC* sequences from *Hp* complete genome (NCBI).
- 182 *Hp* clinical strains isolated from patients presenting different gastric diseases were used in the analysis:
 - 81 from Western countries (Portugal: 28, France: 2, Sweden: 11, Germany: 12, USA: 14, Colombia: 6, Brazil: 8) presenting non-ulcer dyspepsia and gastritis-G (n=40), peptic ulcer-U (n=33) or gastric cancer-GC (n=3);
 - 53 from East Asian countries (Japan: 27 and South Korea: 26) presenting non-ulcer dyspepsia and gastritis-G (n=25), peptic ulcer-PU (n=27) or gastric cancer-GC (n=1);
 - 48 from African countries (Burkina Faso: 8 and Senegal 40) presenting peptic ulcer-PU (n=36) or gastric cancer-GC (n=4); unknown (n=8).

Sequence Analysis and Phylogeny of homC:
- The complete sequences of each gene were obtained by PCR and sequencing;
- Bioinformatic analysis was based on similarity plots and phylogenetic trees obtained with SimPlot Version 3.5.1 and MEGA (Molecular Evolutionary Genetics Analysis) 4.1 software, respectively, using the DNA sequence alignments generated by the BioEdit Sequence Alignment Editor (Version 7.0.1).

Results

- All but one strain harboured a complete *homC* gene at a conserved locus.
- Phylogenetic reconstruction of *homC* revealed a geographic segregation, with three predominant clusters (Fig. 1): Western cluster (*hpEurope*), comprising strains from Europe and most of the strains from Columbia, USA and Brazil; Asian/American cluster (*hpEAsia*), including strains from Korea, Japan (*subgroup *hpEAsian*) and from Peru and Venezuela (*subgroup *hpEAmerican*), and African cluster (*subgroup *hpWAfrica*) mostly comprised of strains from Burkina Faso, Senegal, Gambia and a few strains from Portugal, France, USA and Brazil.

![Phylogenetic analysis of 208 homC sequences obtained from Hp clinical and reference strains.](image)

FIGURE 1: Phylogenetic analysis of 208 *homC* sequences obtained from *Hp* clinical and reference strains.

The Neighbor-Joining phylogenetic tree of the nucleotide alignments was constructed on the basis of nucleotide sequences using the genetic parameter model and bootstrap 1000 replicates. The branch length index is represented on the tree.

Abbreviations used:
- G: non-ulcer dyspepsia and gastritis-P: peptic ulcer-G: gastric cancer

hpEAsia

hpWAfrica

hpEAmerican

hpEurope

Results

- A similarity plot analysis suggests a conserved profile of gene segregation, where three segments were defined (FIGURE 2):
 - **segment 1 (5' end extremity):** sequences are separated according to the geographical origin of the strain in two groups: East Asian/Amerindian and African group and Western group (level of similarity ~40%);
 - **segment 2 (middle region):** highly polymorphic region (level of similarity ~40%), in which 8 allelic variants were identified (AI-AVIII);
 - **segment 3 (3' end extremity):** more conserved region (level of similarity ~90%).

FIGURE 2: Similarity plot analysis of 208 *homC* sequences representing the eight allelic variants (AI-red, AIblue, AVred, AVblue, AI-Amerind, AI-Amerind, AI-Amerind, AVAmerind, AVAmerind) on the genome. The plot was generated with the Kimura 2-parameter, a 200-pb window, a 20-pb step without GapStop and *AmeC* sequence from a Western strain as reference.

Results

The eight allelic variants identified in segment 2 presented different frequencies among the strains tested, and geographic specificity according to the most prevalent ones was observed (FIGURE 3): allele AI predominant (66.2%) and exclusive in Western group; allele AV was predominant (94.1%) in East Asian/Amerindian strains and was not observed in Western strains; the All allele was predominant (66.7%) in African strains and was the only allele present in the three geographical groups.

FIGURE 3: Distribution of the eight *homC* alleles in Western, East Asian/Amerindian and African strains.

The similarity plots by geographical region (FIGURE 4) show that the African-predominant allele (AI) was the most distant from the other two allelic variants predominant in Western strains (AII) and in East Asian/Amerindian (AVII).

The evidence that the segment 2 is the most polymorphic among strains from the same geographic region (FIGURE 4) but the most conserved within each allele (not shown) strongly supports its choice as the allelic region.

The All allele was strongly associated with a peptic ulcer disease (p<0.007). Moreover, a more virulent genotype (*cagA*vac*A*) was associated with AI (p<0.01) and AV (p<0.001) alleles.

FIGURE 4: Similarity plot analysis of *homC* sequences from the same geographical group. The plot was generated with the Kimura 2-parameter, a 200-pb window, a 20-pb step without GapStop.

Conclusions

Overall, the regular presence of *homC* and its allelic variability with geographic specificity suggest that *homC* is a host-interactive gene and a good candidate to be part of the pool of *H. pylori* OMPs involved in bacterial persistence. Moreover, the allelic variants may constitute biomarkers of the gastric disease and of the virulence of the strain.