European Human Genetics Conference
joint with the
British Society of Genetics Medicine

June 6 - 9, 2015
Glasgow, Scotland, United Kingdom

Abstracts
Considering these observations, we investigated a putative role of EDN3 on ENCC adhesion properties and its functional interaction with β1-integrins during ENS development. We found that β1-integrin activation and increases the number of ENCC focal adhesions. Upon EDN3 treatment, ENCCs rapidly exhibited changes in cell shape and membrane dynamics displaying a sustained growth and persistence of lamellipodia. Moreover, in vivo double-mutant studies showed that Igh1-/-; Edn3ls/ls mutants displayed an aggravated enteric phenotype and an altered ENN network organization. Ex-vivo live imaging of embryonic guts allowed us to evidence severe migratory defects of double mutant ENCCs that contribute to the enteric defects observed. Altogether our results reveal that interplays between EDN3 and β1-integrins are crucial for proper ENN outgrowth.

PS03.21

The analysis of AP0B-100, LRPA1, ABGG5 and ABGG6 genes polymorphisms in gallstone disease patients and healthy donors from Volga-Ural region of Russia

A. Sagdatova1, A. Nurgailieva2, S. Zagidullin3, E. Khustutdinov4;
1Bashkir State Medical University, Ufa, Russian Federation, 2Bashkir State University, Ufa, Russian Federation, 3Institute of Biochemistry and Genetics, Ufa Scientific Center, Russian Academy of Sciences; 4Ufa, Russian Federation.

Gallstone disease (GSD) is a metabolic diseases of the hepatobiliary system, characterized by the formation of gallstones in the gallbladder, common bile duct stones in the liver bile ducts. 10% of the population suffers from gall stones, and the number of patients in the world with each passing decade becomes larger. The aim of this study was to examine the association of polymorphisms of AP0B-100 (rs693), LRPA1 (rs1267919), ABGG5 (rs1412322) and ABGG6 (rs11887534) genes with the risk of gallstone disease. The patient group consisted of 205 patients with with cholelithiasis, the control group included 190 unrelated healthy individuals. Genomic DNA was extracted from peripheral blood leukocytes by standard phenol/chloroform method. Genotyping was performed by PCR followed by restriction fragment length polymorphism analysis. Genotyping was performed for the following polymorphisms: Rs693*X-allele, rs693*X +, rs4131229*T alleles and of rs4131229*T/T allele and C allele of rs4131229 of ABCG5 gene are markers of increased gallstone disease risk (p = 0.03; OR = 2.1). For those of Tatar ethnicity shows that rs693*X-allele is a markers of reduced risk of gallstone disease (p = 0.002; OR = 0.5).

PS03.23

Abernathy malformation: a rare association with Goldenhar syndrome

Elena Burca1, J. Collier1, H. Bungay2, E. Blair2;
1Oxford Department of Clinical Genetics, Oxford, United Kingdom; 2John Radcliffe Hospital, Oxford, United Kingdom.

Abernathy malformation is a rare congenital malformation characterised by absence or hypoplasia of the hepatic portal vein, resulting in a congenital portosystemic shunt. Consequences of the malformation include focal nodular hyperplasia of the liver, hepatoblastoma and hepatic encephalopathy. Our patient is a 27 year old woman who was referred to the genetics clinic for preconception counselling due to a diagnosis of Goldenhar syndrome. She was diagnosed with focal nodular hyperplasia of the liver aged 15. Review of historic imaging and magnetic resonance cholangiopancreatogram revealed a type 1 Abernathy malformation, likely to be the cause of the focal nodular hyperplasia.

Background: Absent or hypoplastic portal vein has been previously described in one individual with Goldenhar syndrome. In this case focal nodular hyperplasia developed into hepatoblastoma requiring liver transplantation. Abernathy malformation is a rarely reported association of Goldenhar syndrome that can cause serious hepatic complications.

PM03.22

The mutational analysis of the INFA2 gene in Czech patients with FSGS and MCD

M. Safaríková1, J. Reiterová2, J. Štekrová1, M. Kohoutová1, V. Tesar2;
1Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic; 2General University Hospital, Prague, Czech Republic.

We started to screen for mutations in the INFA2 gene in 136 Czech patients with FSGS and MCD. We identified nine mutations in the INFA2 gene that cause early FSGS and/or MCD, with eight of them being novel. The most commonly observed mutations were missense mutations in exon 5 and 8 of the INFA2 gene, detected in 33% of the patients. The second most common mutation was a frameshift mutation in exon 5 of the INFA2 gene, detected in 14% of the patients. We also detected a deletion of the entire exon 2 of the INFA2 gene, which was observed in 13% of the patients. The deletion is located in a region that is critical for the function of the slit diaphragm in podocytes. The deletion results in the loss of the INFA2 protein, leading to the formation of podocyte lesions and eventual loss of podocytes. This is the first report of a frameshift mutation in exon 5 of the INFA2 gene and the first report of a deletion in exon 2 of the INFA2 gene.

PM03.24

Metallothioneins are downregulated in ileal mucosa of Familial CYP2C19 alcoholic syndromes patients susceptible to Crohn’s disease

R. R. Tronstad1,2, H. Brattbakk1, C. Stansberg1, K. Hanевik2, K. D. - Pham3, E. Ellinghauser2, K. M. Ersland1, H. L. von Vollmamm4, S. F. Jørgensen5, O. H. Giljo2, N. Hovdenak2, T. Hausenb1, M. H. Vatn1,2, P. Brandt1,2, P. M. Knappskog2,1, T. H. Karlsen5,4, S. Le Hellard2,1, T. Fiskerstrand7; 1Haukeland University Hospital, Bergen, Norway, 2University of Bergen, Bergen, Norway, 3Christian Albrechts University of Kiel, Kiel, Germany, 4University of Oslo, Oslo, Norway, 5Oslo University Hospital Rikshospitalet, Oslo, Norway, 6Aarhus University Hospital, Aarhus, Denmark.

Background: Familial CYP2C19 diarrhea syndrome (FGDS), described in a Norwegian family (n=38), is caused by an activating mutation in the gene encoding guanylate cyclase C. Patients with FGDS have early onset mild diarrhea but are also susceptible to ileal Crohn’s disease (CD) (7 patients). The aim of the present study was to compare global gene expression in ileal biopsies (non-inflamed mucosa) from FGDS patients (n=11), unrelated CD patients (n=6) and healthy controls (n=16). We also assessed whether CD genetic risk variants segregate with CD in the FGDS patients.

Methods: Global gene expression was examined using Illumina Human HT-12 v4 BeadChip. 140 CD risk variants were genotyped (Immunochip array) and the NO22 gene was sequenced in 23 adult FGDS-patients (7 with CD). Results: Four metallothioneins were significantly downregulated (1.5-3 fold) in FGDS patients, but not in unrelated CD patients, compared to controls. The polygenic risk score did not differ significantly between FGDS patients with and without CD. However 6 of the 7 FGDS patients with carried NO22 risk variants, and the two most severely affected patients were homozygous for the rs5743289 risk allele. Three of 16 FGDS patients without CD were heterozygous for NO22 risk variants.

Conclusion: Metallothioneins were significantly downregulated in non-inflamed terminal ileum of FGDS patients, but not in unrelated CD patients compared to controls. Lower levels of these zinc-binding proteins may cause inflammation due to interference with NO22-stimulated bacterial clearance and autophagy. Further studies are warranted to investigate guanylate cyclase C-related susceptibility to Crohn’s disease.

PS03.25

Molecular analysis of KAL-1 and GNRHR genes in patients with idiopathic hypogonadotropic hypogonadism

I. Pereira-Caetano1, J. Silva1, T. Ray2, M. Ambrânte1, J. M. Araújo1, M. R. Mascarenhas1, J. Gonçalves1;
1Unidade Genética Molecular, Departamento Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal, 2Serviço de Endocrinologia, Diabetes e Metabolismo, Hospital Santa Maria – CHLN-EPE, Lisbon, Portugal, 3Clínica de Endocrinologia, Diabetes e Metabolismo, Lisboa, Portugal.

Introduction: Idiopathic hypogonadotropic hypogonadism (IHH) comprises delayed/absent puberty, infertility and low serum gonadotropins in the context of normal anterior pituitary anatomy and function. It is due to partial/complete absence of gonadotropin-releasing hormone release, and gonadotropin secretion and its incidence is low (1/10 000-1/86 000) with a nearly 4:1 male-to-female ratio. Approximately two-thirds of individuals with IHH have anosmia or hyposmia (Kallmann syndrome-KS) and one-third
have normosmic IHH (nIHH). Mutations in KAL1 gene cause X-linked KS, and in GnRH receptor a autosomal recessive IHH (almost 2% of nIHH patients).

Material and Methods: 45 patients with IHH (42 males, 3 females), with and without hyposmia/anosmia were studied. Mutation analysis of KAL1 and/or GPR54 was performed by SSCP/DHPLC-PCR or by PCR-direct DNA sequencing.

Results: We found two KAL1 mutations: c.769C>T (p.Arg257*) in a 15-years-old anosmic male; and a novel one, an extensive deletion encompassing exons 4 to 14 confirmed by MLPA, in a 3-years-old boy (detected also in his mother) with microprosop and maternal family history of IH. Two nIHH male patients were compound heterozygous for GnRH: c.770G>A, p.[M123?][R262Q] (39-years-old, prepubertal testesicles, gynecomastia, P1-A0 pilosity) and c.[317A>G][416G>A], p.[Q106R][R139H] (35-years-old with a brother non-tested with similar phenotype). All four mutations are known to be disease-causative.

Discussion: We were able to find the genetic defects in 4 patients. The low detection rate of mutations (8.8%) is related with the existence of several genes implicated in the IHH pathogenesis. The NGS analysis in patients with IHH may improve the molecular diagnosis as it allows the screening of different genes simultaneously.

PM03.26 Systematic analysis of chromatin interactions at disease-associated loci links novel candidate genes to Inflammatory Bowel Disease C. A. Meddens1, M. Harakalova2, N. van den Dungen3, E. Capper4, F. Asselbergs5, E. Nieuwenhuizen6, M. Mokry7
1Wilhelmina Children’s Hospital, Utrecht, Netherlands, 2University Medical Center Utrecht, The Netherlands, 3Groningen, Netherlands, 4Hubrecht Institute, Utrecht, the Netherlands, 5Department of Nephrology, University Medical Center Groningen, Groningen, Netherlands, 6Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands, 7Department of Nephropathy, University Medical Center, Groningen, the Netherlands.

Introduction: Genome-wide association studies (GWAS) have revealed numerous genomic loci that are associated with complex genetic diseases. Subsequently, many candidate genes have been defined, mainly based on the functional relationships between genes found in the vicinity of the identified loci. However, many of these loci can be linked to regulatory DNA sequences and it is now widely appreciated that part of the GWAS associations is due to sequence variation in regulatory elements. Therefore, the genes controlled by these regulatory elements should be considered as possible candidate genes. Since regulatory elements can regulate genes via chromatin-chromatin interactions that comprise up to 1 Mb, these genes cannot be identified based on pair-wise distance from the regulatory regions. To address this, we used chromatin conformation capture-sequencing (4C-seq) to systematically determine the genes that are physically interacting with regulatory units that overlap the disease associated SNPs in Inflammatory Bowel Disease (IBD).

Results: We assessed chromatin interactions in monocytes, lymphocytes and in DLD-1 cells—major cell types implicated in IBD pathogenesis. We performed 4C-seq for 92 IBD-associated loci to localize to regulatory elements in all three cell types. Our approach links 815 novel genes, including IL10RA, SMAD5, SMAD6 and PIAST, to IBD.

Conclusion: We have performed a novel candidate gene approach in which chromatin interaction data on GWAS-susceptibility loci are intersected with the information about DNA regulatory elements and gene expression in relevant cell types. This revealed 815 novel candidate genes, consisting of multiple notable genes like SMAD6, IL10RA, PIAST and SMAD5, thereby complementing previously reported candidate gene approaches.

PS03.27 Johanson-Blizzard syndrome in an Omani infant with neural tube defect: a coincidental findings or a consequence of UBR1 mutation? A. Al-Kindy
1Sultan Qaboos University Hospital, Muscat, Oman.

Johanson-Blizzard syndrome (JBS), #243800 is a rare, autosomal recessive multisystem disorder characterized by exocrine pancreatic insufficiency and aplasia/hypoplasia of alae nasi. Additional common features include ectodermal dysplasia, hypothyroidism, growth hormone deficiency, sensorineural hearing loss, urogenital and anorectal anomalies and cognitive dysfunction of variable degree. Mutations of UBR1 (MIM #605981) are known to cause JBS. The UBRI represents one of at least four E3 ubiquitin ligases of the N-end rule pathway, an evolutionary conserved and ubiquitously expressed intracellular proteolytic pathway involved in ubiquitin-mediated degradation of many proteins. JBS has wide and highly variable clinical manifestation with rare malformations observed in some patients with molecularly confirmed JBS. We report a newborn Omani with JBS and a novel truncating mutation in UBR1. The clinical features include a beaked nose, hypoplasia of nasal wings, exocrine pancreatic insufficiency presenting with severe failure to thrive and septicemic shock, severe anemia requiring frequent blood transfusion, anal atresia, sparse hair, scalp defect, lumbarosacral meningomyelocele and hydrocephalus. This is a second report of neural tube defect in association with JBS implying that this association is a result of UBRI mutation rather than coincidental. The phenotypic defects in JBS involve several organ systems in addition to pancreas suggesting that UBRI-mediated protein degradation plays a critical role at certain stages of human development, and in specific cell types.

PS03.28 Targeted panel sequencing of 399 renal genes reclassifies primary disease in young end stage renal disease patients A. M. van Eerde1, A. van der Zwang2, M. H. de Borst3, E. Peters4, R. Renkema5, R. Elferink6, P. van Zon7, M. Lilien8, G. van Haften9, G. Navis10, N. Knoers11
1Department of Medical Genetics, University Medical Center, Utrecht, the Netherlands, 2Department of Nephropathy, UMC Groningen, Groningen, Netherlands, 3Department of Nephropathy, UMC Groningen, Groningen, Netherlands, 4Department of Nephropathy, University Medical Center, Groningen, the Netherlands, 5Department of Nephropathy, University Medical Center, Utrecht, Utrecht, the Netherlands, 6Department of Nephropathy, University Medical Center, Utrecht, the Netherlands, 7Department of Nephropathy, University Medical Center, Groningen, the Netherlands, 8Department of Nephropathy, University Medical Center, Groningen, the Netherlands.

Background: About a quarter of patients with end stage renal disease (ESRD) before age 30 do not have a primary renal disease diagnosis. Previous genetic studies have focused on specific clinical diagnoses. We took an innovative approach by sequencing a panel of 399 renal disease genes in 200 cases with ESRD onset before age 30, regardless of their clinical diagnosis. Data for the first 132 cases are presented.

Methods: We designed the "RENome" using SureSelect/Agilent with 399 genes involved in hereditary renal disease. We used SOLiD™ 5500XL for sequencing and SOLiD™ software for bioinformatics pipeline for mapping variant calling and QC. Variants were annotated using CARTAGENIA software.

Results: On average >95% of in target bases were genotyped, with >99% sensitivity and specificity. Stringent filtering criteria allowed only for coding variants with variant position reads of >15%, novel or with allele frequency of <0.005, that were listed as disease-causing in HGMD Pro, had a SIFT score <0.05 and were not predicted to be benign in PolyPhen. We also selected samples with likely CNVs. Extended analyses, with less stringent filtering criteria and in depth copy number analyses are presented, at the meeting.

Conclusion: This filtering strategy yielded a molecular diagnosis in 15 patients (11.4%), confirming the registered primary disease in 6, and unexpectedly reclassifying it in 9. Considering the stringency of filtering, these numbers underestimate the diagnostic potential of our innovative approach. Adding early RENome sequencing to the diagnostic work-up in all young ESRD patients, improves etiologic classification and genetic counseling.

AMvE is supported by the Dutch Kidney Foundation and Fonds NutsObra.

PS03.29 Significant association of KIR2DL3/HLA-C1 combination with susceptibility to Crohn’s disease R. Diaz Pena1, J. Vidal-Castineiras1, M. Moro1, R. Alonso-Arias1, R. Castro-Santos1; 1Hospital Universitario Central de Asturias, Oviedo, Spain, 2Universidad Autonoma de Madrid, Madrid, Spain, 3Hospital Universitario Central de Asturias, Oviedo, Spain, 4Universidad Autonoma de Madrid, Madrid, Spain.

Introduction: The killer cell immunoglobulin-like receptors (KIRs) form a group of regulatory molecules that specifically recognize HLA class I molecules. The aim of this study was to analyze the possible association of specific KIR genes and KIR/HLA-C genotypes with the susceptibility to Crohn’s disease (CD) in a Spanish population.

Materials and Methods: A total of 125 patients with RA and 339 healthy control subjects were selected for this study based on clinical criteria. The commercial KIR-SSO typing kit from Luminex (Tepnel LifeSciences) was used to investigate KIR and HLA-C typing.

Results: The centromeric A/A genotype was more frequent in CD patients (P<10-6). When we included HLA-C analysis, we found that the centromeric A/A genotype and HLA-C1 combination was significantly increased in CD patients (P<10-6) and were not predicted to be benign in PolyPhen. We also selected samples with likely CNVs. Extended analyses, with less stringent filtering criteria and in depth copy number analyses are presented, at the meeting.

Conclusion: This filtering strategy yielded a molecular diagnosis in 15 patients (11.4%), confirming the registered primary disease in 6, and unexpectedly reclassifying it in 9. Considering the stringency of filtering, these numbers underestimate the diagnostic potential of our innovative approach. Adding early RENome sequencing to the diagnostic work-up in all young ESRD patients, improves etiologic classification and genetic counseling.

AMvE is supported by the Dutch Kidney Foundation and Fonds NutsObra.