Bioaccessibility assessment of patulin and ochratoxin A in cereal and fruit based baby foods using a harmonized in vitro digestion model – contribution for the risk assessment of chemical mixtures

Assunção R.1,2,3,4, Martins C.1, Leclerc Duarte E.4, Alvitro P.1,3
1National Institute of Health Dr. Ricardo Jorge, Food and Nutrition Department, Lisbon, Universidade de Évora, Évora; 2Centre for Environmental and Marine Studies, Faculty of Sciences, University of Lisbon, Lisbon, Universidade de Évora, Escola de Ciências e Tecnologia/ICAAM, Évora
3Corresponding Author: Ricardo Assunção, assuncao@insa.min-saude.pt

BACKGROUND & AIMS

The total amount of an ingested contaminant (external dose) does not always reflect the amount that is available to the body (internal dose). Mycotoxins are fungal natural contaminants commonly found in a variety of foods including baby foods and have been found in cereal and fruit based baby foods. The amount of mycotoxin resisting to the digestion process and potentially absorbable by the systemic circulation and consequently producing it toxic effects – bioaccessibility – is only a part of that ingested.

This study aimed to evaluate the:
1. bioaccessibility of Ochratoxin A (OTA) and Patulin (PAT) in cereal and fruit based baby food;
2. effect of the presence/absence of fruit in the bioaccessibility of PAT and OTA;
3. possible interactions that could happen when these mycotoxins co-occur.

MATERIALS & METHODS

• Samples:
 Cereal (n=3) and cereal and fruit (n=3) based baby food samples were artificially contaminated to 20 µg Kg⁻¹ of PAT, 1 µg Kg⁻¹ OTA or their mixture (PAT+OTA).

• In vitro Digestion method:
 Bioaccessibility studies were performed according to the harmonised IVD model described by Minekus et al. (2014)\(^1\). This model resulted from an international consensus concerning several aspects as fluids composition, enzymatic activities and sample and fluids amount (Fig. 1).

• Extraction & analysis methods:
 PAT extraction with n-hexane, ethyl acetate. Purification with SPE; Quantification by HPLC-UV (PAT).
 OTA extraction with MeOH/H₂O; Purification with SPE; Quantification by HPLC (OTA).
 Artificial contamination of samples (PAT+OTA)

• Matrix Interferences in HPLC analysis
 To evaluate possible matrix interferences in HPLC analysis, blank samples were digested and then contaminated at same mycotoxins concentration, and recovery values were determined.

RESULTS

Table 1: Bioaccessibility (%) results of PAT and OTA in cereal and fruit based baby food samples (n=6), artificially contaminated. Bioaccessibility values are expressed as mean±SE of three replicates. “W” and “Wo” samples represent samples with and without fruit, respectively.

![Table 1: Bioaccessibility (%) results of PAT and OTA in cereal and fruit based baby food samples (n=6), artificially contaminated.](image)

![Figure 1: In vitro digestion procedure according to Minekus et al., 2014.](image)

![Figure 2: Bioaccessibility (%) results of PAT and OTA in cereal and fruit based baby food samples (n=6), considering the presence of single or mixture of mycotoxins. Statistically significant differences were found between single and mixture PAT bioaccessibility results (Wilcoxon Signed Rank test, p=0.001).](image)

![Figure 3: Bioaccessibility (%) results of PAT and OTA in cereal and fruit based baby food samples (n=6) and its relationship with the presence of fruit. Statistically significant differences were determined when compared OTA in mixture, considering samples with and without fruit (*, Mann-Whitney test with p=0.002). For the remaining test scenarios no significant differences were found.](image)

![Figure 4: Bioaccessibility (%) results of PAT and OTA in cereal and fruit based baby food samples (n=6) and its relationship with the number of fruits present in baby foods. Comparison were made between samples without fruits and samples with 1, 2 and 5 fruits. Statistically significant differences were determined for 1 and 2 fruits, comparing to 0 fruits, for OTA in mixture (*, Mann-Whitney test with p=0.016) and OTA, single (p=0.489)).](image)

![Figure 5: The number of fruits affected the bioaccessibility of PAT and OTA.](image)

![Figure 6: The number of fruits affected the bioaccessibility of PAT and OTA.](image)

Highlights:

1. A significant portion of PAT and OTA can reach the small intestine and thus, be available to cross the intestinal barrier and produce their toxic effects.
2. Simultaneous presence of mycotoxins affects the bioaccessibility values. Further studies with different mixtures of mycotoxins are needed to corroborate it.
3. The presence of fruit and the number of fruits in cereal and fruit based baby foods indicated a potential influence in mycotoxins bioaccessibility.

This study provides new information related with the bioaccessibility of mycotoxins in baby foods. The results offer a more comprehensive picture of what occurs during the digestion of contaminants in the gastrointestinal tract and subsequently contribute to provide a more accurate risk assessment of single and multiple food contaminants.

Acknowledgments: This research was supported by the project MycoMix (PTDC/CTM-PAT/116590/2010, FCT Portugal).

Adobe InCopy: This research was supported by the project MycoMix (PTDC/CTM-PAT/116590/2010, FCT Portugal).