IDENTIFICATION OF MATERNAL UNIPARENTAL ISODISOMY OF CHROMOSOME 10 IN A PATIENT WITH MITOCHONDRIAL DNA DEPLETION SYNDROME

Nogueira C1, Marques JS2, Nesti C3, Azevedo A4, Di Lullo M5, Meschini MC1, Orlachio A5, Videira A6, Santorelli FM3, Vilarinho L1

INTRODUCTION

Twinkle, the mitochondrial helicase encoded by C10orf2, serves a key function in mtDNA replication [1] and its mutations associated with a broad spectrum of clinical conditions characterized by qualitative or quantitative defects of mtDNA, including infantile-onset spinocerebellar ataxia (IOSCA), progressive external ophthalmoplegia, and the hepatocerebral mtDNA depletion syndrome (MDS). The signs in IOSCA demonstrate a fairly distinct pattern. Among these, peripheral neuropathy seems to be the most common presenting feature in C10orf2 defects [2].

PATIENTS AND METHODS

We studied a Portuguese child, born to unrelated healthy parents, who presented hypotonia and Pierre-Robin sequence with mandibular retrusion, partial syndactyly of 2nd–3rd fingers, bilateral strabismus, and eyelid asymmetry. The child manifested severe intellectual and developmental disability and nystagmus in the following months. Brain MRI revealed brain atrophy and a thin corpus callosum (Figure 1). Serum lactate levels were increased, OXPHOS activities in a skeletal muscle biopsy were in the low normal range and there was a severe mtDNA depletion in muscle (residual mtDNA levels were 20% of normal age matched controls).

RESULTS

Two “in cis” homozygous splice site mutations in C10orf2 (c.1593-3T>C + c.1593-5C>T) were identified (Figure 2a), which predicted in silico to activate a new cryptic acceptor site and lead to missplicing. The novel mutations were heterozygous in the mother and the healthy brother whereas the father was wild-type. Once a false paternity and a multi-exon deletion on the paternal allele by MLPA were ruled out, some microsatellite markers and SNPs flanking C10orf2 on chromosome 10q24 were genotyped and the result was consistent with segmental uniparental isodisomism transmission (UPD) of the maternal chromosome 10 (Figure 2b).

DISCUSSION / CONCLUSION

Our study expands the background of MDS patients with UPD, a similar condition has already been reported for TYMP and DGUOK, two other causes of MDS [3,4], and illustrates the need to consider UPD in cases of homozygosity of a rare mutation being responsible for recessive disease in non-consanguineous families. We report the first UPD of chromosome 10 in a patient presenting mutations in C10orf2.

REFERENCES