THE SOLUBLE HFE ISOFORM – A REGULATOR OF IRON ABSORPTION IN THE DUODENUM

Bruno Silva1, Joana Ferreira1, Vera Santos1, Patrícia Sousa2, Cilênia Baldaia2, Fátima Serejo2 and Paula Faustino2

1Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa; Portugal
2Departamento de Gastroenterologia e Hepatologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa; Portugal

BACKGROUND

The regulation of dietary iron absorption in duodenum is one of the key steps to maintain the body iron homeostasis. Once inside the enteroctye, iron is directed to the basolateral membrane being oxidized by hephaestin which mediates iron efflux towards circulation transferrin in cooperation with ferroportin.

HFE is a major histocompatibility complex class I-like protein which gene is commonly mutated in Hereditary Hemochromatosis, a disorder characterized by excessive intestinal iron absorption and its deposition in several organs1. It has been postulated that HFE may contribute to iron metabolism regulation by activating hepcidin synthesis in hepatocytes and regulating the expression of iron metabolism-related genes in duodenum.

In addition to the full-length HFE transcript (4.2 kb in length), several alternative splicing HFE transcripts have been reported but their functional significance remains elusive2. Amongst them two give rise to a truncated and soluble HFE protein isoform (sHFE). The sHFE isoform maintains the ability to associate with β2M, but not with TFR1, and it is secreted to the extracellular environment in several cell types3.

AIMS

The main objective of this work was to assess if the sHFE isoform plays a role in the iron absorption regulation. In particular, we aimed:

1) To investigate whether a holo-transferrin stimulus affects the expression levels of sHFE transcripts in enterocyte-like and macrophage cell models.
2) To determine the effect of both the endogenous and exogenous sHFE isoform on the expression of several iron metabolism-related genes in a duodenal cell model (HuTu-80).
3) To correlate the peripheral blood iron metabolism biomarkers with sHFE levels in duodenum biopsies.

RESULTS

1) The expression of the sHFE transcripts is up-regulated by intracellular iron in both enterocyte-like and macrophage cell lines.

2.1) The endogenous sHFE isoform downregulates the expression of duodenal cytochrome b and hephaestin genes in an enterocyte-like cell model.

2.2) The exogenous sHFE isoform also downregulates hephaestin expression through a clathrin-independent, dynamin-mediated and RhoA-regulated endocytosis mechanism.

3) Hephaestin and sHFE transcript levels present a negative correlation in the duodenum of dyspepsia patients.

CONCLUSIONS

Through this study we might have unveiled the role of the soluble HFE isoform (resulting from the intron 4 inclusion splicing alternative transcripts) in iron metabolism regulation. The sHFE protein may be secreted by several tissues into the bloodstream, accordingly to the body iron status, and may act in the duodenum by reducing duodenal cytochrome b and hephaestin expression.

Since duodenal cytochrome b and hephaestin proteins have crucial functions in iron absorption by the duodenum (iron reduction and oxidation at the apical and basolateral membranes of the enterocyte, respectively) we can hypothesize that their decreased expression, modulated by the sHFE isoform, will be translated in a reduction of dietary iron absorption (Fig.1).

REFERENCES


FUNDING

This work was supported in part by grants from Centro Hospitalar Lisboa Norte (PTDC/SAU/60311/2004 and Pest-C/SAU/60311/2013).

Fig. 1 – The regulation of dietary iron absorption by the sHFE isoform.