INVESTIGATION OF THE \textit{IN vivo} GENOTOXIC EFFECTS OF A TITANIUM DIOXIDE NANOMATERIAL IN \textit{LACZ} PLASMID-BASED TRANSGENIC MICE

Henriqueta Louroa, Ana Tavaresa, Nâdia Vitala, Pedro M. Costaa,b, Elsa Alvercad, Edwin Zwartd, Wim H. de Jongd, Valérie Fessardd,e, João Lavinhad and Maria João Silvaa

aDepartment of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Lisbon, Portugal; bInstituto de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal; cDepartment of Environmental Health, INSA, Lisbon, Portugal; dCentre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; eUnité Toxicologie des Contaminants, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères, France

\texttt{m.joao.silva@insa.min-saude.pt}

Results

\textbf{Background}

In a recent work, we showed that some rutile forms of titanium dioxide nanomaterials (TiO\textsubscript{2}) were able to induce a significant increase in the frequency of micronucleated human lymphocytes (Tavares et al., Toxicol in vitro, 2014).

For an anatase form of TiO\textsubscript{2} (NM-102, JRC repository), a significant genotoxic effect was observed for a single concentration, and the result of genotoxicity assessment was considered equivocal, thereby requiring further investigation.

\textbf{Objectives}

To investigate the genotoxic potential of NM-102 \textit{in vivo}, using an integrated analysis of multiple genotoxicity endpoints in the LacZ plasmid-based transgenic mouse model.

\textbf{Methods}

\textbf{Conclusions}

\begin{itemize}
 \item No mutagenic effects could be disclosed for NM-102 in the liver or spleen of lacZ transgenic mice, in the tested conditions.
 \item Histological and TEM analyses confirmed the accumulation of NM-102 in mouse liver and a moderate inflammatory effect in this organ.
 \item The overall integration of the data strengthens the weight of evidence of an absence of TiO\textsubscript{2} genotoxicity \textit{in vivo}, although the possibility of a secondary genotoxic effect driven by an inflammatory response within a longer time window or at higher doses cannot be excluded and should be further investigated.
\end{itemize}

The work was co-funded by EU Grant Agreement 2669 21-11 (NANOGENOTOX), in the framework of the Health Programme and by INSA.