**THE EXPRESSION OF THE SOLUBLE HFE CORRESPONDING TRANSCRIPT IS UP-REGULATED BY INTRACELLULAR IRON AND INHIBITS IRON ABSORPTION IN A DUODENAL CELL MODEL**

Bruno Silva1, Joana Ferreira1, Vera Santos1, Cilenia Baldaia2, Fátima Serejo3 and Paula Faustino4
1 Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa; Portugal
2 Departamento de Gastroenterologia e Hepatologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa; Portugal

**BACKGROUND**

Iron is a crucial element for living beings as it is involved in biological processes such as respiratory and metabolic pathways working as a co-factor of several enzymes. As there are no active mechanisms to excrete iron, and since both iron deficiency and overload can be harmful, the human body has developed fine-tuned iron homeostasis regulation mechanisms. Those encompass iron absorption by duodenum enterocytes, storage in liver hepatocytes and recycling by macrophages.

HFE is a major histocompatibility complex class I-like protein which gene is commonly mutated in Hereditary hemochromatosis, a disorder characterized by excessive intestinal iron absorption and deposition in several organs.

The role of HFE in iron homeostasis remains unclear. It has been postulated that it may contribute to iron metabolism regulation by activating hepcidin synthesis in hepatocytes and regulating the expression of iron metabolism related genes in duodenum.

**Aims**

1. To investigate if iron affects the expression levels of sHFE transcripts.
2. To correlate the levels of peripheral blood iron metabolism biomarkers with sHFE levels in the liver.
3. To determine the effect of both the endogenous and exogenous sHFE isoform on the expression of several iron metabolism-related genes in a duodenal cell model.

**Methods**

- HuTu-80 (human duodenum adenocarcinoma), PMA-activated THP-1 (monocytic cell line) and HepG2 (liver hepatocellular carcinoma) cells were stimulated with holo-transferrin (holo-Tf; 20μg/mL). RNA was extracted and TFRE, total HFE and sHFE expression were determined by RT-qPCR.
- RNA was extracted from HCV patients liver biopsies. The expression levels of sHFE and HAMP were quantified by RT-qPCR and correlations were established with the peripheral blood iron metabolism biomarkers and HCV virology.
- HuTu-80 cells (human duodenum adenocarcinoma) were transfected with pcDNA constructs expressing HFE full length (HFE) and HFE_inv (sHFE) tagged to Flag, followed by an iron stimulus (holo-Tf 20μM). Cell lysates and cell culture supernatants were submitted to immunoprecipitation assays using mouse anti-Flag antibody. These were subjected to a 2% SDS-PAGE, followed by transfer to a nitrocellulose membrane. Immuno-detections were performed with mouse antibody anti-Flag, mouse anti-TFRE and rabbit anti-B2M.
- RNA was extracted from these cells and the expression of iron-related genes TFRE, SLC11A2, SLC40A1, CYB2D1 and HEPH were assessed by RT-qPCR.
- HuTu-80 cells were treated with an endocytosis inhibitor (Dynasore, 40μM) and then stimulated with sHFE conditioned medium (obtained by overexpressing sHFE in HEK293 cells). Duodenal cytochrome b and hephaestin expressions were quantified by RT-qPCR.

**Results**

1. sHFE transcript expression after holo-transferrin stimulus in different cell models

   - sHFE transcript expression increases with iron stimulus in duodenal and macrophage cell lines

2. Effect of endogenous sHFE on the expression of iron metabolism-related genes in HuTu-80 cells

   - sHFE overexpression down-regulates duodenal cytochrome b and hephaestin expressions

3. Effect of exogenous sHFE endocytosis on CYB2D1 and HEPH expressions

   - Exogenous sHFE downregulates hephaestin expression in an endocytosis-dependent manner

**Conclusions**

- The expression of sHFE increases with intracellular iron in both enterocyte and macrophage cell lines, while it decreases in an hepatocyte cell line. However, hepcidin expression also decreases in HepG2 cells, contrarily to what has been previously observed for human primary hepatocytes.
- The levels of sHFE transcripts in the liver of patients with HCV do not correlate with their peripheral blood iron metabolism biomarkers.
- The overexpression of the sHFE is able to modify de expression of some iron metabolism related genes. It acts by repressing the expression of duodenal cytochrome b and hephaestin.
- Exogenous sHFE is also able to downregulate the expression of hephaestin through an endocytosis-dependent mechanism.
- Since duodenal cytochrome b and hephaestin are proteins presenting functions in iron absorption (iron reduction and oxidation at the enterocyte, respectively), we can hypothesize that their decrease expression modulated by the sHFE will be translated to a reduction of dietary iron absorption in the duodenum.
- Through this study we might have unravelled the contribution of the sHFE splice variants in iron homeostasis, sHFE may be secreted by several tissues into the bloodstream and may act in the regulation of dietary iron absorption in duodenum, reducing iron absorption, preventing iron overload and contributing to iron metabolism regulation.

**References**

2. Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa; Portugal.
3. Departamento de Gastroenterologia e Hepatologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa; Portugal.

**2 – sHFE transcript levels correlation with iron parameters in HCV patients liver biopsies**

- HAMP expression presents a positive correlation with serum ferritin levels
- No significant correlations were achieved between sHFE expression and peripheral blood iron metabolism biomarkers