Functional impact of global rare copy number variation in autism spectrum disorders

A list of authors and their affiliations appears at the end of the paper.

The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability. Although ASDs are known to be highly heritable (~90%), the underlying genetic determinants are still largely unknown. Here we analysed the genome-wide characteristics of rare (<1% frequency) copy number variation in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic copy number variants (CNVs) (1.19 fold, \(P = 0.012 \)), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, \(P = 3.4 \times 10^{-4} \)). Among the CNVs there were numerous \textit{de novo} and inherited events, sometimes in combination in a given family, implicating many novel ASD genes such as \textit{SHANK2}, \textit{SYNGAP1}, \textit{DLGAP2} and the X-linked \textit{DDX53–PITCH1} locus. We also discovered an enrichment of CNVs disrupting functional gene sets involved in cellular proliferation, projection and motility, and GTPase/Ras signalling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways.

Twin and family studies indicate a predominantly genetic basis for ASD susceptibility and provide support for considering these disorders as a clinical spectrum. Some 5–15% of individuals with an ASD have an identifiable genetic aetiology corresponding to known rare single-gene disorders (for example, fragile X syndrome) and chromosomal rearrangements (for example, maternal duplication of 15q11-1q31). Rare mutations have been identified in synaptic genes, including \textit{NLGN3}, \textit{NLGN4X} (ref. 4) and \textit{SHANK3} (ref. 5), and microarray studies have revealed copy number variation (CNV) as risk factors. CNV examples include \textit{de novo} events observed in 5–10% of ASD cases, \textit{de novo} or inherited hemizygous deletions and duplications of 16p11.2 (refs 9–11) and \textit{NRXN1} (ref. 7), and exceptionally rare homozygous deletions in consanguineous families. Genomewide association studies using single nucleotide polymorphisms (SNPs) have highlighted two potential ASD risk loci at 5p14.1 (ref. 13) and 5p15.2 (ref. 14), but these data indicate that common variation will account for only a small proportion of the heritability in ASD.

To delineate further the contribution of rare genomic variants to autism we genotyped 1,275 ASD cases and their parents using the Illumina Infinium 1M single SNP microarray (Fig. 1). A set of 1,981 controls used for comparison studies was genotyped on the same platform and both data sets were subjected to the same quality control procedures. Ultimately, we analysed 996 ASD cases (876 trios) and 1,287 controls of European ancestry to minimize confounds due to population differences (Supplementary Figs 1 and 2 and Supplementary Table 1-3).

Two CNV prediction algorithms (QuantiSNP and iPattern) were used to establish a stringent data set of non-redundant CNVs called by both algorithms in an individual (Fig. 1, Supplementary Tables 1-3 and Supplementary Fig. 3). This stringent data set of 5,478 rare CNVs in 996 cases and 1,287 controls of European ancestry (Supplementary Table 4) had the following characteristics: (1) CNV present at <1% frequency in the total sample (cases and controls); (2) CNV \(\geq 30 \text{ kb} \) in size (because >95% of these could be confirmed); and (3) all CNVs further verified using combined evidence from the PennCNV algorithm and child–parent intensity fold changes, genotype proportions (to verify deletions) and visual inspection (for chromosome X).

We assessed the impact of rare CNV in cases compared to controls using three primary measures of CNV burden: the number of CNVs per individual, the estimated CNV size, and the number of genes affected by CNVs (Table 1). No significant difference was found in the former two measures. However, the estimated CNV size was larger in individuals compared to controls \((\text{mean} \pm \text{SD}, 7.48 \pm 10.61 \text{ vs.} 3.93 \pm 5.09 \text{ Mb})\).

![Figure 1](image)

Figure 1 | CNV discovery and characterization. Comprehensive procedures were used to identify the rare CNV data set (boxed). Dashed arrows indicate CNVs not included in downstream analyses. Labels \(a\)–\(f\) are as follows: \(a\), SNP and intensity quality control (QC) with ancestry estimation; \(b\), QC for CNV calls; \(c\), pilot validation experiments using quantitative PCR were used to evaluate the false discovery rate; \(d\), rare CNVs in samples of European ancestry were defined as \(\geq 30 \text{ kb} \) in size and present in the total sample set at a frequency <1%. A total of 70 out of 996 (17%) of ASD cases were analysed on different lower-resolution arrays in previous studies. Label \(e\) indicates that all CNVs were computationally verified and at least 40% of case CNVs were also experimentally validated by qPCR and/or independent Agilent or other SNP microarrays; \(f\), 3,677 additional European ancestry controls were used to test specific loci from the primary burden analyses. Additional details are in the Methods and Supplementary Information. ID, intellectual disability.
In contrast, we discovered a significant fine-level ancestry differences by pair-matching cases and controls measures (Supplementary Tables 4a and 5), even after controlling for fine-level ancestry differences by pair-matching cases and controls (Supplementary Information)16. In contrast, we discovered a significant increase in the number of genes intersected by rare CNV in cases when focusing on gene-containing segments (1.19-fold increase, empirical P = 0.012). This ASD association with genic CNV was stronger for deletions (1.26-fold increase, empirical P = 8.0 \times 10^{-5}). These differences remained after we further controlled for potential case–control differences that could be present due to biological differences or technical biases. Restricting our analysis to autosomal CNVs (that is, after removing CNVs located on chromosome X) also resulted in a consistent enriched gene count in ASD cases compared to controls. Single-occurrence CNV deletions had increased rates in ASD cases over controls, indicating that some could be pathogenic.

We then examined parent–child transmission and confirmed that 5.7% (50 out of 876) of ASD cases had at least one de novo CNV with \(> 0.6\% \) carrying two or more de novo events (Supplementary Tables 4a, 6 and 7). The de novo CNV rate in our simplex and multiplex families was 5.6% (22 out of 393) and 5.5% (19 out of 348), respectively, in contrast with previous studies showing a higher rate in simplex families8,9. A total of 226 validated de novo (7) and inherited (219) CNVs not observed in controls and affecting single genes were found (Supplementary Table 8).

Numerous novel candidate ASD loci such as SHANK2, SYNGAP1 and DLGAP2 were identified on the basis of the observation that de novo CNV affects these genes in cases but not controls (Supplementary Table 6). The relatedness of SHANK2 to the causal ASD gene SHANK3 (ref. 5), involvement of SYNGAP1 in intellectual disability19, and interaction of DLGAP family proteins with SHANK proteins20 further support their role in ASDs. Maternally inherited X-linked deletions at DDX53–PTCHD1 (7 cases) implicate this locus in ASD. We tested an additional 3,677 European ancestry controls (Fig. 1) and again found no CNV at these genes, and DDX53–PTCHD1 emerged as a significant ASD risk factor \((P = 3.1 \times 10^{-7}) \) with the initial 1,287 controls; \(P = 3.6 \times 10^{-6} \) with combined controls; Supplementary Fig. 4).

Figure 2 | CNV burden in known ASD and/or intellectual disability genes. a, Proportion of samples with CNVs overlapping genes and loci known to be associated in ASD with or without intellectual disability (ID) or intellectual disability only, as well as published candidate genes and loci for ASD (Supplementary Table 9). To select for CNVs with maximal impact, they needed to intersect genes and overlap the target loci by \(\geq 50\% \) of their length. Fisher’s exact test \(P \)-values for significant differences \(P \leq 0.05 \) (one tailed) are shown. NS, not significant. b, Enrichment analysis for genes overlapped by rare CNVs in cases compared to controls for the three gene sets in a, relative to the whole genome. Odds ratio and 95% confidence intervals are given for each gene set. Empirical \(P \)-values for gene-set enrichment are indicated above each odds ratio. All \(P \)-values <0.1 are listed.
Association studies of individual rare CNV often have insufficient power to discriminate benign from disease-causing variants. Here, we assessed whether genes and CNVs previously associated with ASD and/or intellectual disability were enriched in cases compared with controls, in order to help identify pathogenic events. We defined three gene lists based on evidence from previous studies of their involvement in ASDs (Supplementary Table 9): (1) ‘ASD implicated’ list consisting of 36 disease genes and 10 loci strongly implicated in ASD and identified in subjects with ASD or ASD and intellectual disability; (2) ‘intellectual disability’ consisting of 110 disease genes and 17 loci implicated in intellectual disability but not yet in ASD; and (3) ‘ASD candidates’ including 103 genes from previous studies of common and rare variants.

We observed a higher proportion of cases with rare CNVs overlapping ‘ASD implicated’ disease genes compared to controls (4.3% versus 2.3%, Fisher exact test $P = 5.4 \times 10^{-3}$; Fig. 2a), corresponding to a significant enrichment for genes in this set (odds ratio (OR) = 1.8; 95% confidence interval (CI) 1.3–2.6, empirical $P = 2.6 \times 10^{-3}$; Fig. 2b, see also Supplementary Information). This effect was stronger for duplications, which may also disrupt genes (OR = 2.3; 95% CI 1.4–3.8, empirical $P = 9.4 \times 10^{-4}$). Enrichment was also found for rare CNVs overlapping intellectual disability genes, more notably for deletions (OR = 2.1; 95% CI 1.1–4.2, empirical $P = 0.053$). In contrast, there was no evidence of enrichment among case CNVs compared to control CNVs for genes in the ASD candidates set (empirical $P > 0.3$). When the two disease gene sets ‘ASD implicated’ and ‘intellectual disability’ were combined, we observed 7.6% of cases with rare CNVs preferentially affecting ASD/intellectual disability genes compared to 4.5% in controls (Fisher exact test $P = 1.2 \times 10^{-3}$; Fig. 2a).

The observed enrichments did not change when potential case–control genome-wide differences for CNV rate and size were considered. Our global analyses of these putative pathogenic loci use subjective boundaries for CNV overlap. Manual inspection of the data yields more accurate results. After eliminating CNVs that are less likely to have an aetiological role (heterozygous CNVs that disrupt autosomal recessive loci, events outside the critical region of overlap of genomic disorders, X-linked genes in females inherited from non-ASD fathers, duplications inherited from non-ASD parents, and intronic CNVs in NRXN1), 25 CNVs remained in the ASD group, compared to only four in the controls ($P = 3.6 \times 10^{-6}$; Supplementary Table 10). Moreover, the latter four CNVs were all duplications at 1q21.1, 16p11.2 or 22q11.2, loci known to exhibit incomplete penetrance and variable expressivity. The population attributable risk provided by the combination of all ASD CNVs that overlap ASDs and/or intellectual disability genes is estimated to be 3.3% (Supplementary Table 11). We also identified rare de novo chromosomal abnormalities and large CNVs likely to be aetiological (Supplementary Table 10).

We then tested for functional enrichment of gene sets among those genes affected by CNVs to identify biological processes involved in ASD (Fig. 3). Here, the term gene set refers to groups of genes that share a common function or operate in the same pathway. Such a functional enrichment mapping approach can combine single-gene effects into biologically meaningful groups.

We compiled comprehensive collections of gene sets (Supplementary Table 12) and used the Fisher’s exact test to assess which gene sets were more frequently affected by rare CNV events in ASD cases compared to controls. An estimate of the false-discovery rate (FDR) at each gene set was obtained by random permutation of case and control labels (Supplementary Information). To visualize enriched gene sets, overlap scores were used to organize these sets graphically into a functional enrichment map (or network) using Cytoscope. We identified the ‘seed’ gene sets for the network at an FDR q-value of 5% and further relaxed the thresholds to 12.5% to better capture the network topology.

Using these criteria only deletions were found to be significantly enriched in gene sets in cases over controls (Supplementary Fig. 5), consistent with the global burden results (Table 1). Specifically, 76 gene sets affected by deletions (2.18% of sets tested) were found to be enriched and used to construct a functional map (Fig. 3a and Supplementary Figs 6 and 7). We tested for possible bias, including measures of CNV size and number for cases versus controls per gene set, as well as genome proximity, but no differences were found that...
might explain the observed enrichments (Supplementary Figs 8 and 9).

We identified enrichments in gene sets known to be involved in ASDs and also discovered new candidate ASD pathways (Fig. 3a and Supplementary Table 13). For example, gene sets involved in cell and neuronal development and function (including projection, motility and proliferation) previously reported in ASD-associated phenotypes were identified. Novel observations included gene sets involved in GTPase/Ras signalling, with component Rho GTPases known to be involved in regulating dendrite and spine plasticity and associated with intellectual disability. We also found a tentative link to sets in the kinase activity/regulation functional group where only minorities of these sets meet a stringent 5% FDR q-value threshold (Supplementary Fig. 10).

We further assessed the relationship of our functional enrichment map with known ASD/intellectual disability genes (Fig. 3b and Supplementary Fig. 11) and found genes enriched in sets linked to microtubule cytoskeleton, glycosylation and CNS development/adhesion. The two groups of genes found to be enriched in deletions (Fig. 3a) also displayed connectivity to the ASD/intellectual disability disease gene sets, either directly or through intermediates (Fig. 3b and Supplementary Fig. 12). Although ASD genes seem to be enriched in different subsets of genes compared to intellectual-disability-only genes, we cannot discount the possibility that this is the result of selection bias, and we expect that more intellectual disability genes may yet be linked to ASD.

Our findings provide strong support for the involvement of multiple rare genic CNVs, both genome-wide and at specific loci, in ASD. These findings, similar to those recently described in schizophrenia, suggest that at least some of these ASD CNVs (and the genes that they affect) are under purifying selection. Genes previously implicated in ASD by rare variant findings have pointed to functional themes in the presynaptic density (PSD), highlight maturation and function of glutamatergic synapses and SHANK3, localized presynaptically or at the post-synaptic density (PSD). Genes previously implicated in intellectual disability (and the genes that they affect) are under purifying selection. Genes previously implicated in autism spectrum disorders, nature 459, 528–533 (2009).

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Acknowledgements The authors acknowledge the families participating in the study and the main funders of the Autism Genome Project Consortium (AGP); Autism Speaks (USA), the Health Research Board (HRB; Ireland), The Medical Research Council (MRC; UK), Genome Canada/Ontario Genomics Institute, and the Hilbbrand Foundation (USA). Additional support for individual groups was provided by the US National Institutes of Health (NIH grants HD055751, HD05782, HD055784, HD355465, MH35270, MH52584, MH57881, MH061009, MH06359, MH066673, MH080647, MH081754, MH66766, NS026630, NS042165, NS049261), the Canadian Institute for Advanced Research (CIFAR), the Canadian Institutes for Health Research (CIHR), Assistance Publique–Hôpitaux de Paris (France), Autistica, Canada Foundation for Innovation/Ontario Innovation Trust, Deutsche Forschungsgemeinschaft (grant Po 255/17-4) (Germany), EC Sixth FP AUTISM MOLGEN, Fundação Calouste Gulbenkian (Portugal), Fondation de France, Fondation FondaMental (France), Fondation Orange (France), Fondation pour la Recherche Médicale (France), Fundação para a Ciência e Tecnologia (Portugal), the Hospital for Sick Children Foundation and University of Toronto (Canada), INSEMP (France), Institut Pasteur (France), the Italian Ministry of Health (Convention 181 of 19.10.2001), the John P Hussman Foundation (USA), McLaughlin Centre (Canada), Ontario Ministry of Research and Innovation (Canada), the Seaver Foundation (USA), the Swedish Science Council, The Centre for Applied Genomics (Canada), the Utah Autism Foundation (USA) and the Wellcome Trust core award 075491/Z/03/Z (UK). D.P. is supported by fellowships from the Royal Netherlands Academy of Arts and
The Centre for Applied Genomics and Program in Genetics and Genomic Biology, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5G 1X8, Canada. 20Department of Pediatrics and Psychology, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada. 21Department of Autism and Developmental Disorders, University of Michigan, Ann Arbor, Michigan 48109-2054, USA. 22Department of Molecular Physiology and Biophysics, Vanderbilt Kennedy Center, and Centers for Human Genetics Research and Molecular Neuroscience, Vanderbilt University, Nashville, Tennessee 37232, USA. 23Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA. 24Autism Speaks, New York 10016, USA. 25Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina 27599-3366, USA. 26Department of Child Psychiatry, University Medical Center, Utrecht 3508 GA, The Netherlands. 27INERM U 955, Fondation FondaMental, APHP, Hopital Robert Debre, Child and Adolescent Psychiatry, 75019 Paris, France. 28Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington 98195, USA. 29Disciplines of Genetics and Medicine, Memorial University of Newfoundland, St John’s Newfoundland A1B 3V6, Canada. 30The John P. Hussman Institute for Human Genetics, University of Miami, Miami, Florida 33101, USA. 31Division of Psychiatry, McGill University, Montreal, Quebec H3A 1A2, Canada. 32Department of Child and Adolescent Psychiatry,Centre for Addiction and Mental Health, Toronto, Ontario M5G 1X8, Canada. 33Department of Psychiatry, University of Utah Medical School, Salt Lake City, Utah 84103, USA. 34Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA. 35Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg 69117, Germany. 36The Seaver Autism Center for Research and Treatment, Department of Psychiatry, Mount Sinai School of Medicine, New York 10029, USA. 37Department of Medicine, University of Washington, Seattle, Washington 98195, USA. 38Autism Research Exchange, Autism Speaks, Los Angeles, California 90036-4234, USA. 39The Seaver Autism Center for Research and Treatment, Department of Psychiatry, Mount Sinai School of Medicine, New York 10029, USA. 40Department of Child and Adolescent Psychiatry, New York University and NYU Child Study Center, 550 First Avenue, New York, New York 10016, USA. 41Department of Psychiatry, Division of Child and Adolescent Psychiatry and Child Development, Stanford University School of Medicine, Stanford, California 94304, USA. 42Department of Pediatrics, McMaster University, Hamilton, Ontario L8N 3S5, Canada. 43Centre d’etudes et de Recherches en Psychopathologie, Universite de Toulouse Le Mirail, Toulouse 31200, France. 44INSERM U995, Department of Psychiatry, Groupe Hospitalier Henri-Mondor-Albert Chancre, AP-HP, Universite Paris 12, Fondation FondaMental, Creteil 94000, France. 45Hospital for Sick Children, London 1X8, UK. 4620Department of Psychiatry, Institute of Psychiatry, London SE5 8AF, UK. 47Department of Psychiatry, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA. 48Autism Speaks, Los Angeles, California 90036-4234, USA. 49Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario L8N 3S5, Canada. 50Department of Child Psychiatry, Booth Hall Children’s Hospital, Blackpool, Lancashire FY1 5HT, UK. 51Department of Psychology, University of Toronto, Toronto, Ontario M5G 1X8, Canada. 52Department of Psychology, University of North Carolina, Chapel Hill, North Carolina 27599-3366, USA. 53Division of Child and Adolescent Psychiatry, Boston Children’s Hospital, Boston, Massachusetts 02115, USA. 54Centre for Addiction and Mental Health, Toronto, Ontario M5G 1X8, Canada. 55Department of Child and Adolescent Psychiatry, University of North Carolina at Chapel Hill, North Carolina 27599-3366, USA. 56Department of Medicine, School of Epidemiology and Public Health, University of Maryland, College Park, Maryland 20742, USA. 57Department of Medicine, School of Epidemiology and Public Health, University of Connecticut Health Center, Farmington, Connecticut 06030, USA. 58Autism Research Center, The Hospital for Sick Children, London 1X8, UK. 59Department of Psychiatry, University of Toronto, Toronto, Ontario M5S 1A1, Canada. 60MRC Functional Genomics Unit, Department of Human Genetics, University of Oxford, Oxford OX1 3QX, UK. 61Department of Biomedical, University of Bologna, 40126 Bologna, Italy. 62Department of Psychiatry, University of Oxford, Warneford Hospital, Headington, Oxford OX3 7JX, UK. 63Neonwen Centre, Guy’s Hospital, London SE1 9RT, UK. 64Stella Maris Institute for Child and Adolescent Neuropsychiatry, 56128 Calambrone (Pisa), Italy. 65Child and Adolescent Mental Health, University of Newcastle, Sir James Spence Institute, Newcastle upon Tyne NE1 4LP, UK. 66Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, J. W. Goethe University Frankfurt, 60528 Frankfurt, Germany. 67Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology, and Cognitive Functions, Institut Pasteur; University Paris Diderot-Paris 7, CNRS URA 2182, Fondation FondaMental, 75015 Paris, France. 68Autism Research Unit, The Hospital for Sick Children and Blooreview Kids Rehab, University of Toronto, Toronto, Ontario M5G 1X8, Canada. 69Department of Pediatrics and Psychology, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada. 70Autism and Communicative Disorders, University of Michigan, Ann Arbor, Michigan 48109-2054, USA. 71Department of Molecular Physiology and Biophysics, Vanderbilt Kennedy Center, and Centers for Human Genetics Research and Molecular Neuroscience, Vanderbilt University, Nashville, Tennessee 37232, USA. 72Department of Biostatistics and Medicine, University of Washington, Seattle, Washington 98195, USA. 73Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A1, Canada.