HAEMOLYSIS IN SICKLE CELL ANAEMIA: A GENOTYPE/PHENOTYPE ASSOCIATION STUDY

João Lavinha¹, Andreia Coelho¹, Alexandra Dias², Anabela Morais³, Emanuel Ferreira¹, Isabel Picanço¹, Baltazar Nunes⁴, Paula Faustino¹

¹Departamento de Genética Humana, Instituto Nacional de Saúde Ricardo Jorge, Lisboa (INSA). ²Departamento de Pediatria, Hospital Prof Doutor Fernando Fonseca, Amadora. ³Departamento de Pediatria, Hospital de Santa Maria, Lisboa. ⁴Departamento de Epidemiologia, INSA.

INTRODUCTION & OBJECTIVES

Sickle-cell anaemia (SCA) is a clinically heterogeneous autosomal recessive monogenic chronic anaemia characterized by recurrent episodes of vaso-occlusion, haemolysis and infection. Several genetic and environmental modifiers have been suggested to modulate the onset and course of SCA (1).

METHODS

Subjects: 99 paediatric SCA (SS) patients (median current age of 9.9 years) followed-up in two general hospitals in Greater Lisbon area (median follow-up/patient of 5.0 years).

Haemolysis biomarkers: LDH and total bilirubin level and reticulocyte count.

Candidate gene genotyping: BCL11A, CD36, EDN1, HBA, HBB cluster (including HBG), HBS1L-MYB, ITGA4, HMOX1, NOS3, THBS1 and VCAM1.

Statistical analysis: Association studies between candidate genotypes and haemolysis biomarkers using T test ANOVA parametric tests (LDH, total bilirubin) or Mann-Whitney/Kuskal-Wallis non-parametric tests (reticulocyte count), all performed with SPSS v20.0 software, with subsequent correction for multiple testing (false discovery rate).

RESULTS

Although in a large number of tests a seemingly significant (i.e., <0.05) association was observed, only the following ones were confirmed upon correction for the false discovery rate:

- An elevated LDH was associated to haplotype 7 within VCAM1.
- A lower total bilirubin was associated to the 3.7kb deletion at HBA, rs2070744_T allele and haplotypes 3 and 4 at NOS3 and haplotype 9 within VCAM1 and rs3783598_G and rs3917024_T alleles at VCAM1 promoter.
- A diminished reticulocyte count was associated to the 3.7kb deletion at HBA, whereas an elevated count was associated to rs1984112_G allele at CD36 (see figure).

Furthermore, at the phenotypic level all three haemolysis biomarkers were positively associated to left ventricle dilation, a common chronic complication of SCA.

CONCLUSION

On the whole, our findings suggest a complex genetic architecture for the haemolytic endophenotype in SCA involving multiple pathways, namely control of erythrocyte volume and haemoglobinisation, vascular cell adhesion, NO synthesis and lipid metabolism. Further mechanistic studies are needed to explore these avenues leading to a better understanding of the inter- and intra-individual clinical variability of SCA.


Acknowledgement: Work partially funded by FCT grants PIC/IC/83084/2007 and CIGMH.