A NOVEL MISSENSE MUTATION IN \textit{SUCLA2} ASSOCIATED WITH MILD METHYLMALONIC ACIDURIA

Noqueira C1, Garcia P2, Diogo L2, Valongo C1, Santorelli FM3, Vilarinho L1

1Genetics Department, R&D Unit, National Institute of Health, INSA, Porto, Portugal; 2Hereditary Metabolic Diseases Unit, Children’s Hospital, Coimbra, Portugal; 3Molecular Medicine & Neurogenetics, IRCCS Fondazione Stella Maris, Pisa, Italy

INTRODUCTION

Succinyl CoA synthase is a mitochondrial matrix enzyme that catalyzes the reversible synthesis of succinate and ATP or GTP from succinyl-CoA and ADP in the tricarboxylic acid cycle (TCA). This enzyme is made up of two subunits, α and β, encoded by \textit{SUCLG1} and \textit{SUCLA2}, respectively (Figure 1) [1].

![Relevant metabolic pathways illustrating the metabolic effects of ADP-forming succinyl-CoA synthetase deficiency.](image1)

The clinical features of patients with mutations in \textit{SUCLA2} include early childhood hypotonia, developmental delay, and almost invariably, progressive dystonia and sensorineural deafness. Mutations in \textit{SUCLA2} and \textit{SUCLG1} cause an encephalomyopathic form of infantile mtDNA depletion syndrome[2].

A useful diagnostic clue in succinyl CoA synthase disorders is a "mildly" elevated urinary methylmalonic acid (MMA), and presence of TCA intermediates.

To date, few patients with \textit{SUCLG1} mutations have been reported, whereas mutations in \textit{SUCLA2} have been reported in 17 patients [3]. We here present an additional patient with a novel \textit{SUCLA2} mutation.

RESULTS

Mutation analysis of \textit{SUCLA2} revealed a homozygous c.985A>G mutation in exon 8 (p.M329V) (Figure 2). This missense mutation affects an amino acid that is highly conserved in different species and was not found in controls. The analysis by bioinformatics tools also confirmed a pathogenic mutation (Figure 3). Altogether, these findings indicate that the identified mutation is pathogenic and responsible for this disorder.

![Sequence analysis of part of \textit{SUCLA2} gene. A) Patient’s sequence with p.M329V mutation; B) Normal control sequence.](image2)

![Analysis by bioinformatics tools of p.M329V. A) PolyPhen-2 prediction of functional effects of human variations; B) ClustalW alignments; C) SIFT predictions.](image3)

DISCUSSION / CONCLUSION

The clinical and biochemical phenotype of our patient is strikingly similar to other reported patients with \textit{SUCLA2} mutations [1]. In addition, the mildly elevated levels of methylmalonate and C4DC raised the suspicion of this disease, which was confirmed by the identification of a novel mutation in \textit{SUCLA2}.

Further studies will be perform to determine mitochondrial DNA depletion in muscle tissue, and the expected reduced amounts of SUCLA2 protein, by Western-blot.

Our study contributed to expand the spectrum of patients with \textit{SUCLA2} mutations, and will be important for an accurate genetic counseling and a prenatal diagnosis to the affected family.

REFERENCES

PATIENTS AND METHODS

We report a 17-month-old-boy, who presented severe muscular hypotonia, failure to thrive, developmental delay, weight loss during a gastroenteritis crises, dysmorphism and muscular atrophy.

A clinical investigation disclosed hyperlactacidemia together with moderate excretion of MMA and elevated C4-dicarboxylic carnitine (C4DC).

Sequencing analysis of \textit{SUCLA2} and \textit{SUCLG1} was performed using standard methods.